in mmdnn/conversion/_script/extractModel.py [0:0]
def extract_model(args):
if args.framework == 'caffe':
from mmdnn.conversion.examples.caffe.extractor import caffe_extractor
extractor = caffe_extractor()
elif args.framework == 'keras':
from mmdnn.conversion.examples.keras.extractor import keras_extractor
extractor = keras_extractor()
elif args.framework == 'tensorflow' or args.framework == 'tf':
from mmdnn.conversion.examples.tensorflow.extractor import tensorflow_extractor
extractor = tensorflow_extractor()
elif args.framework == 'mxnet':
from mmdnn.conversion.examples.mxnet.extractor import mxnet_extractor
extractor = mxnet_extractor()
elif args.framework == 'cntk':
from mmdnn.conversion.examples.cntk.extractor import cntk_extractor
extractor = cntk_extractor()
elif args.framework == 'pytorch':
from mmdnn.conversion.examples.pytorch.extractor import pytorch_extractor
extractor = pytorch_extractor()
elif args.framework == 'darknet':
from mmdnn.conversion.examples.darknet.extractor import darknet_extractor
extractor = darknet_extractor()
elif args.framework == 'coreml':
from mmdnn.conversion.examples.coreml.extractor import coreml_extractor
extractor = coreml_extractor()
else:
raise ValueError("Unknown framework [{}].".format(args.framework))
files = extractor.download(args.network, args.path)
if files and args.image:
predict = extractor.inference(args.network, files, args.path, args.image)
if type(predict) == list:
print(predict)
else:
if predict.ndim == 1:
if predict.shape[0] == 1001:
offset = 1
else:
offset = 0
top_indices = predict.argsort()[-5:][::-1]
predict = [(i, predict[i]) for i in top_indices]
predict = generate_label(predict, args.label, offset)
for line in predict:
print (line)
else:
print (predict.shape)
print (predict)