def print_cfg_nicely()

in mmdnn/conversion/darknet/cfg.py [0:0]


def print_cfg_nicely(blocks):
    print('layer     filters    size              input                output');
    prev_width = 416
    prev_height = 416
    prev_filters = 3
    out_filters =[]
    out_widths =[]
    out_heights =[]
    ind = -2
    for block in blocks:
        ind = ind + 1
        if block['type'] == 'net':
            prev_width = int(block['width'])
            prev_height = int(block['height'])
            continue
        elif block['type'] == 'convolutional':
            filters = int(block['filters'])
            kernel_size = int(block['size'])
            stride = int(block['stride'])
            is_pad = int(block['pad'])
            pad = (kernel_size-1)/2 if is_pad else 0
            width = (prev_width + 2*pad - kernel_size)/stride + 1
            height = (prev_height + 2*pad - kernel_size)/stride + 1
            print('%5d %-6s %4d  %d x %d / %d   %3d x %3d x%4d   ->   %3d x %3d x%4d' % (ind, 'conv', filters, kernel_size, kernel_size, stride, prev_width, prev_height, prev_filters, width, height, filters))
            prev_width = width
            prev_height = height
            prev_filters = filters
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'maxpool':
            pool_size = int(block['size'])
            stride = int(block['stride'])
            width = prev_width/stride
            height = prev_height/stride
            print('%5d %-6s       %d x %d / %d   %3d x %3d x%4d   ->   %3d x %3d x%4d' % (ind, 'max', pool_size, pool_size, stride, prev_width, prev_height, prev_filters, width, height, filters))
            prev_width = width
            prev_height = height
            prev_filters = filters
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'avgpool':
            width = 1
            height = 1
            print('%5d %-6s                   %3d x %3d x%4d   ->      %3d' % (ind, 'avg', prev_width, prev_height, prev_filters,  prev_filters))
            prev_width = 1
            prev_height = 1
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'softmax':
            print('%5d %-6s                                    ->      %3d' % (ind, 'softmax', prev_filters))
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'cost':
            print('%5d %-6s                                     ->      %3d' % (ind, 'cost', prev_filters))
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'reorg':
            stride = int(block['stride'])
            filters = stride * stride * prev_filters
            width = prev_width/stride
            height = prev_height/stride
            print('%5d %-6s             / %d   %3d x %3d x%4d   ->   %3d x %3d x%4d' % (ind, 'reorg', stride, prev_width, prev_height, prev_filters, width, height, filters))
            prev_width = width
            prev_height = height
            prev_filters = filters
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'route':
            layers = block['layers'].split(',')
            layers = [int(i) if int(i) > 0 else int(i)+ind for i in layers]
            if len(layers) == 1:
                print('%5d %-6s %d' % (ind, 'route', layers[0]))
                prev_width = out_widths[layers[0]]
                prev_height = out_heights[layers[0]]
                prev_filters = out_filters[layers[0]]
            elif len(layers) == 2:
                print('%5d %-6s %d %d' % (ind, 'route', layers[0], layers[1]))
                prev_width = out_widths[layers[0]]
                prev_height = out_heights[layers[0]]
                assert(prev_width == out_widths[layers[1]])
                assert(prev_height == out_heights[layers[1]])
                prev_filters = out_filters[layers[0]] + out_filters[layers[1]]
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'region':
            print('%5d %-6s' % (ind, 'detection'))
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'shortcut':
            from_id = int(block['from'])
            from_id = from_id if from_id > 0 else from_id+ind
            print('%5d %-6s %d' % (ind, 'shortcut', from_id))
            prev_width = out_widths[from_id]
            prev_height = out_heights[from_id]
            prev_filters = out_filters[from_id]
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'softmax':
            print('%5d %-6s' % (ind, 'softmax'))
            out_widths.append(prev_width)
            out_heights.append(prev_height)
            out_filters.append(prev_filters)
        elif block['type'] == 'connected':
            filters = int(block['output'])
            print('%5d %-6s                            %d  ->      %3d' % (ind, 'connected', prev_filters,  filters))
            prev_filters = filters
            out_widths.append(1)
            out_heights.append(1)
            out_filters.append(prev_filters)
        else:
            print('unknown type %s' % (block['type']))