in PyTorchClassification/train.py [0:0]
def train(train_loader, model, criterion, optimizer, epoch, param_copy = None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
print_log('Epoch:{0}'.format(epoch))
print_log('Itr\t\tTime\t\tData\t\tLoss\t\tPrec@1\t\tPrec@3\t\tPrec@5')
for param_group in optimizer.param_groups:
writer.add_scalar('training/learning_rate', param_group['lr'] / param_group['lr_mult'],
len(train_loader)*epoch)
break
# Make lr really low for the first couple iterations
iterations_processed = 0
if args.warm_up_iterations:
print_log('Warming up the training for {} iterations with a very small learning rate'.format(args.warm_up_iterations))
adjust_learning_rate(optimizer, 10000)
data_iterator = tqdm.tqdm(enumerate(train_loader), total=len(train_loader))
for i, (input, im_id, target) in data_iterator:
iterations_processed = iterations_processed + 1
if args.warm_up_iterations and iterations_processed > args.warm_up_iterations:
args.warm_up_iterations = 0
print_log('Finished warm-up phase')
adjust_learning_rate(optimizer, epoch)
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec3, prec5 = accuracy(output.data, target, topk=(1, 3, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data)
prec1 = reduce_tensor(prec1)
prec5 = reduce_tensor(prec5)
else:
reduced_loss = loss.data
losses.update(reduced_loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top3.update(prec3.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
optimizer.step()
torch.cuda.synchronize()
# measure elapsed time
batch_time.update(args.batch_size/ (time.time() - end))
end = time.time()
writer.add_scalar('training/loss', losses.val, len(train_loader)*epoch + i)
writer.add_scalars('training/topk', {'top1':top1.val,
'top3':top3.val,
'top5':top5.val},
len(train_loader)*epoch + i)
if i % args.print_freq == 0:
x = vutils.make_grid(input[0]/2 + 0.5)
writer.add_image('Preprocessed training images', x, len(train_loader)*epoch + i)
#for name, param in model.named_parameters():
# writer.add_histogram(name, param.clone().cpu().data.numpy(), i)
print_log('[{0}/{1}]\t'
'{batch_time.val:.2f} ({batch_time.avg:.2f})\t'
'{data_time.val:.2f} ({data_time.avg:.2f})\t'
'{loss.val:.3f} ({loss.avg:.3f})\t'
'{top1.val:.2f} ({top1.avg:.2f})\t'
'{top3.val:.2f} ({top3.avg:.2f})\t'
'{top5.val:.2f} ({top5.avg:.2f})'.format(i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top3=top3, top5=top5))
args.warm_up_iterations = 0
print_log(' *** Training summary at epoch {epoch:d}: Prec@1 {top1.avg:.3f} '.format(epoch=epoch, top1=top1) +
'Prec@3 {top3.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.3f}'.format(top3=top3, top5=top5, loss=losses))