def getNumIterations: Int = $()

in lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/params/LightGBMParams.scala [330:484]


  def getNumIterations: Int = $(numIterations)
  def setNumIterations(value: Int): this.type = set(numIterations, value)

  val learningRate = new DoubleParam(this, "learningRate", "Learning rate or shrinkage rate")
  setDefault(learningRate -> 0.1)

  def getLearningRate: Double = $(learningRate)
  def setLearningRate(value: Double): this.type = set(learningRate, value)

  val numLeaves = new IntParam(this, "numLeaves", "Number of leaves")
  setDefault(numLeaves -> 31)

  def getNumLeaves: Int = $(numLeaves)
  def setNumLeaves(value: Int): this.type = set(numLeaves, value)

  val baggingFreq = new IntParam(this, "baggingFreq", "Bagging frequency")
  setDefault(baggingFreq->0)

  def getBaggingFreq: Int = $(baggingFreq)
  def setBaggingFreq(value: Int): this.type = set(baggingFreq, value)

  val baggingSeed = new IntParam(this, "baggingSeed", "Bagging seed")
  setDefault(baggingSeed->3)

  def getBaggingSeed: Int = $(baggingSeed)
  def setBaggingSeed(value: Int): this.type = set(baggingSeed, value)

  val maxDepth = new IntParam(this, "maxDepth", "Max depth")
  setDefault(maxDepth-> -1)

  def getMaxDepth: Int = $(maxDepth)
  def setMaxDepth(value: Int): this.type = set(maxDepth, value)

  val minSumHessianInLeaf = new DoubleParam(this, "minSumHessianInLeaf", "Minimal sum hessian in one leaf")
  setDefault(minSumHessianInLeaf -> 1e-3)

  def getMinSumHessianInLeaf: Double = $(minSumHessianInLeaf)
  def setMinSumHessianInLeaf(value: Double): this.type = set(minSumHessianInLeaf, value)

  val modelString = new Param[String](this, "modelString", "LightGBM model to retrain")
  setDefault(modelString -> "")

  def getModelString: String = $(modelString)
  def setModelString(value: String): this.type = set(modelString, value)

  val verbosity = new IntParam(this, "verbosity",
    "Verbosity where lt 0 is Fatal, eq 0 is Error, eq 1 is Info, gt 1 is Debug")
  setDefault(verbosity -> -1)

  def getVerbosity: Int = $(verbosity)
  def setVerbosity(value: Int): this.type = set(verbosity, value)

  val boostFromAverage = new BooleanParam(this, "boostFromAverage",
    "Adjusts initial score to the mean of labels for faster convergence")
  setDefault(boostFromAverage -> true)

  def getBoostFromAverage: Boolean = $(boostFromAverage)
  def setBoostFromAverage(value: Boolean): this.type = set(boostFromAverage, value)

  val boostingType = new Param[String](this, "boostingType",
    "Default gbdt = traditional Gradient Boosting Decision Tree. Options are: " +
      "gbdt, gbrt, rf (Random Forest), random_forest, dart (Dropouts meet Multiple " +
      "Additive Regression Trees), goss (Gradient-based One-Side Sampling). ")
  setDefault(boostingType -> "gbdt")

  def getBoostingType: String = $(boostingType)
  def setBoostingType(value: String): this.type = set(boostingType, value)

  val lambdaL1 = new DoubleParam(this, "lambdaL1", "L1 regularization")
  setDefault(lambdaL1 -> 0.0)

  def getLambdaL1: Double = $(lambdaL1)
  def setLambdaL1(value: Double): this.type = set(lambdaL1, value)

  val lambdaL2 = new DoubleParam(this, "lambdaL2", "L2 regularization")
  setDefault(lambdaL2 -> 0.0)

  def getLambdaL2: Double = $(lambdaL2)
  def setLambdaL2(value: Double): this.type = set(lambdaL2, value)

  val isProvideTrainingMetric = new BooleanParam(this, "isProvideTrainingMetric",
    "Whether output metric result over training dataset.")
  setDefault(isProvideTrainingMetric -> false)

  def getIsProvideTrainingMetric: Boolean = $(isProvideTrainingMetric)
  def setIsProvideTrainingMetric(value: Boolean): this.type = set(isProvideTrainingMetric, value)

  val metric = new Param[String](this, "metric",
    "Metrics to be evaluated on the evaluation data.  Options are: " +
      "empty string or not specified means that metric corresponding to specified " +
      "objective will be used (this is possible only for pre-defined objective functions, " +
      "otherwise no evaluation metric will be added). " +
      "None (string, not a None value) means that no metric will be registered, a" +
      "liases: na, null, custom. " +
      "l1, absolute loss, aliases: mean_absolute_error, mae, regression_l1. " +
      "l2, square loss, aliases: mean_squared_error, mse, regression_l2, regression. " +
      "rmse, root square loss, aliases: root_mean_squared_error, l2_root. " +
      "quantile, Quantile regression. " +
      "mape, MAPE loss, aliases: mean_absolute_percentage_error. " +
      "huber, Huber loss. " +
      "fair, Fair loss. " +
      "poisson, negative log-likelihood for Poisson regression. " +
      "gamma, negative log-likelihood for Gamma regression. " +
      "gamma_deviance, residual deviance for Gamma regression. " +
      "tweedie, negative log-likelihood for Tweedie regression. " +
      "ndcg, NDCG, aliases: lambdarank. " +
      "map, MAP, aliases: mean_average_precision. " +
      "auc, AUC. " +
      "binary_logloss, log loss, aliases: binary. " +
      "binary_error, for one sample: 0 for correct classification, 1 for error classification. " +
      "multi_logloss, log loss for multi-class classification, aliases: multiclass, softmax, " +
      "multiclassova, multiclass_ova, ova, ovr. " +
      "multi_error, error rate for multi-class classification. " +
      "cross_entropy, cross-entropy (with optional linear weights), aliases: xentropy. " +
      "cross_entropy_lambda, intensity-weighted cross-entropy, aliases: xentlambda. " +
      "kullback_leibler, Kullback-Leibler divergence, aliases: kldiv. ")
  setDefault(metric -> "")

  def getMetric: String = $(metric)
  def setMetric(value: String): this.type = set(metric, value)

  val minGainToSplit = new DoubleParam(this, "minGainToSplit",
    "The minimal gain to perform split")
  setDefault(minGainToSplit -> 0.0)

  def getMinGainToSplit: Double = $(minGainToSplit)
  def setMinGainToSplit(value: Double): this.type = set(minGainToSplit, value)

  val maxDeltaStep = new DoubleParam(this, "maxDeltaStep",
    "Used to limit the max output of tree leaves")
  setDefault(maxDeltaStep -> 0.0)

  def getMaxDeltaStep: Double = $(maxDeltaStep)
  def setMaxDeltaStep(value: Double): this.type = set(maxDeltaStep, value)

  val maxBinByFeature = new IntArrayParam(this, "maxBinByFeature",
    "Max number of bins for each feature")
  setDefault(maxBinByFeature -> Array.empty)

  def getMaxBinByFeature: Array[Int] = $(maxBinByFeature)
  def setMaxBinByFeature(value: Array[Int]): this.type = set(maxBinByFeature, value)

  val minDataInLeaf = new IntParam(this, "minDataInLeaf",
    "Minimal number of data in one leaf. Can be used to deal with over-fitting.")
  setDefault(minDataInLeaf -> 20)

  def getMinDataInLeaf: Int = $(minDataInLeaf)
  def setMinDataInLeaf(value: Int): this.type = set(minDataInLeaf, value)

  var delegate: Option[LightGBMDelegate] = None
  def getDelegate: Option[LightGBMDelegate] = delegate
  def setDelegate(delegate: LightGBMDelegate): this.type = {
    this.delegate = Option(delegate)
    this
  }