in lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/params/LightGBMParams.scala [20:118]
def getParallelism: String = $(parallelism)
def setParallelism(value: String): this.type = set(parallelism, value)
val topK = new IntParam(this, "topK",
"The top_k value used in Voting parallel, " +
"set this to larger value for more accurate result, but it will slow down the training speed. " +
"It should be greater than 0")
setDefault(topK -> LightGBMConstants.DefaultTopK)
def getTopK: Int = $(topK)
def setTopK(value: Int): this.type = set(topK, value)
val defaultListenPort = new IntParam(this, "defaultListenPort",
"The default listen port on executors, used for testing")
def getDefaultListenPort: Int = $(defaultListenPort)
def setDefaultListenPort(value: Int): this.type = set(defaultListenPort, value)
setDefault(defaultListenPort -> LightGBMConstants.DefaultLocalListenPort)
val driverListenPort = new IntParam(this, "driverListenPort",
"The listen port on a driver. Default value is 0 (random)")
def getDriverListenPort: Int = $(driverListenPort)
def setDriverListenPort(value: Int): this.type = set(driverListenPort, value)
setDefault(driverListenPort -> LightGBMConstants.DefaultDriverListenPort)
val timeout = new DoubleParam(this, "timeout", "Timeout in seconds")
setDefault(timeout -> 1200)
def getTimeout: Double = $(timeout)
def setTimeout(value: Double): this.type = set(timeout, value)
val useBarrierExecutionMode = new BooleanParam(this, "useBarrierExecutionMode",
"Barrier execution mode which uses a barrier stage, off by default.")
setDefault(useBarrierExecutionMode -> false)
def getUseBarrierExecutionMode: Boolean = $(useBarrierExecutionMode)
def setUseBarrierExecutionMode(value: Boolean): this.type = set(useBarrierExecutionMode, value)
val useSingleDatasetMode = new BooleanParam(this, "useSingleDatasetMode",
"Use single dataset execution mode to create a single native dataset per executor (singleton) " +
"to reduce memory and communication overhead. Note this is disabled when running spark in local mode.")
setDefault(useSingleDatasetMode -> true)
def getUseSingleDatasetMode: Boolean = $(useSingleDatasetMode)
def setUseSingleDatasetMode(value: Boolean): this.type = set(useSingleDatasetMode, value)
val numBatches = new IntParam(this, "numBatches",
"If greater than 0, splits data into separate batches during training")
setDefault(numBatches -> 0)
def getNumBatches: Int = $(numBatches)
def setNumBatches(value: Int): this.type = set(numBatches, value)
val repartitionByGroupingColumn = new BooleanParam(this, "repartitionByGroupingColumn",
"Repartition training data according to grouping column, on by default.")
setDefault(repartitionByGroupingColumn -> true)
def getRepartitionByGroupingColumn: Boolean = $(repartitionByGroupingColumn)
def setRepartitionByGroupingColumn(value: Boolean): this.type = set(repartitionByGroupingColumn, value)
val numTasks = new IntParam(this, "numTasks",
"Advanced parameter to specify the number of tasks. " +
"SynapseML tries to guess this based on cluster configuration, but this parameter can be used to override.")
setDefault(numTasks -> 0)
def getNumTasks: Int = $(numTasks)
def setNumTasks(value: Int): this.type = set(numTasks, value)
val chunkSize = new IntParam(this, "chunkSize",
"Advanced parameter to specify the chunk size for copying Java data to native. " +
"If set too high, memory may be wasted, but if set too low, performance may be reduced during data copy." +
"If dataset size is known beforehand, set to the number of rows in the dataset.")
setDefault(chunkSize -> 10000)
def getChunkSize: Int = $(chunkSize)
def setChunkSize(value: Int): this.type = set(chunkSize, value)
val matrixType = new Param[String](this, "matrixType",
"Advanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense. " +
"Values can be auto, sparse or dense. Default value is auto, which samples first ten rows to determine type.")
setDefault(matrixType -> "auto")
def getMatrixType: String = $(matrixType)
def setMatrixType(value: String): this.type = set(matrixType, value)
val numThreads = new IntParam(this, "numThreads",
"Number of threads for LightGBM. For the best speed, set this to the number of real CPU cores.")
setDefault(numThreads -> 0)
def getNumThreads: Int = $(numThreads)
def setNumThreads(value: Int): this.type = set(numThreads, value)
}
/** Defines common parameters across all LightGBM learners related to learning score evolution.
*/
trait LightGBMLearnerParams extends Wrappable {