in src/SealDetectionRCNN/utils/vis_tool.py [0:0]
def vis_bbox(img, bbox, label=None, score=None, label_names=None, ax=None):
"""Visualize bounding boxes inside image.
Args:
img (~numpy.ndarray): An array of shape :math:`(3, height, width)`.
This is in RGB format and the range of its value is
:math:`[0, 255]`.
bbox (~numpy.ndarray): An array of shape :math:`(R, 4)`, where
:math:`R` is the number of bounding boxes in the image.
Each element is organized
by :math:`(y_{min}, x_{min}, y_{max}, x_{max})` in the second axis.
label (~numpy.ndarray): An integer array of shape :math:`(R,)`.
The values correspond to id for label names stored in
:obj:`label_names`. This is optional.
score (~numpy.ndarray): A float array of shape :math:`(R,)`.
Each value indicates how confident the prediction is.
This is optional.
label_names (iterable of strings): Name of labels ordered according
to label ids. If this is :obj:`None`, labels will be skipped.
ax (matplotlib.axes.Axis): The visualization is displayed on this
axis. If this is :obj:`None` (default), a new axis is created.
Returns:
~matploblib.axes.Axes:
Returns the Axes object with the plot for further tweaking.
"""
if label_names is None:
label_names = list(VOC_BBOX_LABEL_NAMES) + ['bg']
# add for index `-1`
if label is not None and not len(bbox) == len(label):
raise ValueError('The length of label must be same as that of bbox')
if score is not None and not len(bbox) == len(score):
raise ValueError('The length of score must be same as that of bbox')
# Returns newly instantiated matplotlib.axes.Axes object if ax is None
ax = vis_image(img, ax=ax)
# If there is no bounding box to display, visualize the image and exit.
if len(bbox) == 0:
return ax
for i, bb in enumerate(bbox):
xy = (bb[1], bb[0])
height = bb[2] - bb[0]
width = bb[3] - bb[1]
ax.add_patch(plot.Rectangle(
xy, width, height, fill=False, edgecolor='red', linewidth=2))
caption = list()
if label is not None and label_names is not None:
lb = label[i]
if not (-1 <= lb < len(label_names)): # modfy here to add backgroud
raise ValueError('No corresponding name is given')
caption.append(label_names[lb])
if score is not None:
sc = score[i]
caption.append('{:.2f}'.format(sc))
if len(caption) > 0:
ax.text(bb[1], bb[0],
': '.join(caption),
style='italic',
bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 0})
return ax