contrib/document_cleanup/light_weight_document_cleanup_ICDAR2021/model.py [137:159]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    out = layers.Conv2D(16, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(X_input)
    out = layers.BatchNormalization()(out)
    shortcut3 = out
    out = layers.Conv2D(32, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    shortcut2 = out
    out = layers.Conv2D(64, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    shortcut1 = out
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = layers.add([shortcut1, out])
    out = layers.Conv2D(64, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.Conv2D(32, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.add([shortcut2, out])
    out = layers.Conv2D(16, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.add([shortcut3, out])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



contrib/document_cleanup/light_weight_document_cleanup_ICDAR2021/model.py [173:195]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    out = layers.Conv2D(16, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(X_input)
    out = layers.BatchNormalization()(out)
    shortcut3 = out
    out = layers.Conv2D(32, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    shortcut2 = out
    out = layers.Conv2D(64, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    shortcut1 = out
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = res_net_block(out, 64, 3)
    out = layers.add([shortcut1, out])
    out = layers.Conv2D(64, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.Conv2D(32, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.add([shortcut2, out])
    out = layers.Conv2D(16, kernel_size=(3, 3),activation=tf.nn.relu6, strides=_strides, padding='same',kernel_initializer = 'he_normal')(out)
    out = layers.BatchNormalization()(out)
    out = layers.add([shortcut3, out])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



