utils_cv/tracking/references/fairmot/tracking_utils/utils.py [112:222]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def ap_per_class(tp, conf, pred_cls, target_cls):
    """ Compute the average precision, given the recall and precision curves.
    Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:    True positives (list).
        conf:  Objectness value from 0-1 (list).
        pred_cls: Predicted object classes (list).
        target_cls: True object classes (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # lists/pytorch to numpy
    tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls)

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))

    # Create Precision-Recall curve and compute AP for each class
    ap, p, r = [], [], []
    for c in unique_classes:
        i = pred_cls == c
        n_gt = sum(target_cls == c)  # Number of ground truth objects
        n_p = sum(i)  # Number of predicted objects

        if (n_p == 0) and (n_gt == 0):
            continue
        elif (n_p == 0) or (n_gt == 0):
            ap.append(0)
            r.append(0)
            p.append(0)
        else:
            # Accumulate FPs and TPs
            fpc = np.cumsum(1 - tp[i])
            tpc = np.cumsum(tp[i])

            # Recall
            recall_curve = tpc / (n_gt + 1e-16)
            r.append(tpc[-1] / (n_gt + 1e-16))

            # Precision
            precision_curve = tpc / (tpc + fpc)
            p.append(tpc[-1] / (tpc[-1] + fpc[-1]))

            # AP from recall-precision curve
            ap.append(compute_ap(recall_curve, precision_curve))

    return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Code originally from https://github.com/rbgirshick/py-faster-rcnn.
    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """
    # correct AP calculation
    # first append sentinel values at the end

    mrec = np.concatenate(([0.], recall, [1.]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def bbox_iou(box1, box2, x1y1x2y2=False):
    """
    Returns the IoU of two bounding boxes
    """
    N, M = len(box1), len(box2)
    if x1y1x2y2:
        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
    else:
        # Transform from center and width to exact coordinates
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    # get the coordinates of the intersection rectangle
    inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1)
    inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1)
    inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2)
    inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2)
    # Intersection area
    inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
    # Union Area
    b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1))
    b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M)
    b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M)

    return inter_area / (b1_area + b2_area - inter_area + 1e-16)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



utils_cv/tracking/references/fairmot/utils/utils.py [46:156]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def ap_per_class(tp, conf, pred_cls, target_cls):
    """ Compute the average precision, given the recall and precision curves.
    Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:    True positives (list).
        conf:  Objectness value from 0-1 (list).
        pred_cls: Predicted object classes (list).
        target_cls: True object classes (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # lists/pytorch to numpy
    tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls)

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))

    # Create Precision-Recall curve and compute AP for each class
    ap, p, r = [], [], []
    for c in unique_classes:
        i = pred_cls == c
        n_gt = sum(target_cls == c)  # Number of ground truth objects
        n_p = sum(i)  # Number of predicted objects

        if (n_p == 0) and (n_gt == 0):
            continue
        elif (n_p == 0) or (n_gt == 0):
            ap.append(0)
            r.append(0)
            p.append(0)
        else:
            # Accumulate FPs and TPs
            fpc = np.cumsum(1 - tp[i])
            tpc = np.cumsum(tp[i])

            # Recall
            recall_curve = tpc / (n_gt + 1e-16)
            r.append(tpc[-1] / (n_gt + 1e-16))

            # Precision
            precision_curve = tpc / (tpc + fpc)
            p.append(tpc[-1] / (tpc[-1] + fpc[-1]))

            # AP from recall-precision curve
            ap.append(compute_ap(recall_curve, precision_curve))

    return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Code originally from https://github.com/rbgirshick/py-faster-rcnn.
    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """
    # correct AP calculation
    # first append sentinel values at the end

    mrec = np.concatenate(([0.], recall, [1.]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def bbox_iou(box1, box2, x1y1x2y2=False):
    """
    Returns the IoU of two bounding boxes
    """
    N, M = len(box1), len(box2)
    if x1y1x2y2:
        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
    else:
        # Transform from center and width to exact coordinates
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    # get the coordinates of the intersection rectangle
    inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1)
    inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1)
    inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2)
    inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2)
    # Intersection area
    inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
    # Union Area
    b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1))
    b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M)
    b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M)

    return inter_area / (b1_area + b2_area - inter_area + 1e-16)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



