def __init__()

in contrib/action_recognition/i3d/models/pytorch_i3d.py [0:0]


    def __init__(self, num_classes=400, spatial_squeeze=True,
                 final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
        """Initializes I3D model instance.
        Args:
          num_classes: The number of outputs in the logit layer (default 400, which
              matches the Kinetics dataset).
          spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
              before returning (default True).
          final_endpoint: The model contains many possible endpoints.
              `final_endpoint` specifies the last endpoint for the model to be built
              up to. In addition to the output at `final_endpoint`, all the outputs
              at endpoints up to `final_endpoint` will also be returned, in a
              dictionary. `final_endpoint` must be one of
              InceptionI3d.VALID_ENDPOINTS (default 'Logits').
          name: A string (optional). The name of this module.
        Raises:
          ValueError: if `final_endpoint` is not recognized.
        """

        if final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' % final_endpoint)

        super(InceptionI3d, self).__init__()
        self._num_classes = num_classes
        self._spatial_squeeze = spatial_squeeze
        self._final_endpoint = final_endpoint
        self.logits = None

        if self._final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' % self._final_endpoint)

        self.end_points = {}
        end_point = 'Conv3d_1a_7x7'
        self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
                                            stride=(2, 2, 2), padding=(3,3,3),  name=name+end_point)
        if self._final_endpoint == end_point: return
        
        end_point = 'MaxPool3d_2a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return
        
        end_point = 'Conv3d_2b_1x1'
        self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
                                       name=name+end_point)
        if self._final_endpoint == end_point: return
        
        end_point = 'Conv3d_2c_3x3'
        self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
                                       name=name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_3a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return
        
        end_point = 'Mixed_3b'
        self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_3c'
        self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_4a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4b'
        self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4c'
        self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4d'
        self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4e'
        self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_4f'
        self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'MaxPool3d_5a_2x2'
        self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
                                                             padding=0)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_5b'
        self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Mixed_5c'
        self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
        if self._final_endpoint == end_point: return

        end_point = 'Logits'
        self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
                                     stride=(1, 1, 1))
        self.dropout = nn.Dropout(dropout_keep_prob)
        self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
                             kernel_shape=[1, 1, 1],
                             padding=0,
                             activation_fn=None,
                             use_batch_norm=False,
                             use_bias=True,
                             name='logits')

        self.build()