def __init__()

in utils_cv/tracking/references/fairmot/opts.py [0:0]


  def __init__(self):
    self.parser = argparse.ArgumentParser()
    # basic experiment setting
    self.parser.add_argument('task', default='mot', help='mot')
    self.parser.add_argument('--dataset', default='jde', help='jde')
    self.parser.add_argument('--exp_id', default='default')
    self.parser.add_argument('--test', action='store_true')
    #self.parser.add_argument('--load_model', default='../models/ctdet_coco_dla_2x.pth',
                             #help='path to pretrained model')
    self.parser.add_argument('--load_model', default='',
                             help='path to pretrained model')
    self.parser.add_argument('--resume', action='store_true',
                             help='resume an experiment. '
                                  'Reloaded the optimizer parameter and '
                                  'set load_model to model_last.pth '
                                  'in the exp dir if load_model is empty.') 

    # system
    self.parser.add_argument('--gpus', default='0, 1',
                             help='-1 for CPU, use comma for multiple gpus')
    self.parser.add_argument('--num_workers', type=int, default=8,
                             help='dataloader threads. 0 for single-thread.')
    self.parser.add_argument('--not_cuda_benchmark', action='store_true',
                             help='disable when the input size is not fixed.')
    self.parser.add_argument('--seed', type=int, default=317, 
                             help='random seed') # from CornerNet

    # log
    self.parser.add_argument('--print_iter', type=int, default=0, 
                             help='disable progress bar and print to screen.')
    self.parser.add_argument('--hide_data_time', action='store_true',
                             help='not display time during training.')
    self.parser.add_argument('--save_all', action='store_true',
                             help='save model to disk every 5 epochs.')
    self.parser.add_argument('--metric', default='loss', 
                             help='main metric to save best model')
    self.parser.add_argument('--vis_thresh', type=float, default=0.5,
                             help='visualization threshold.')
    
    # model
    self.parser.add_argument('--arch', default='dla_34', 
                             help='model architecture. Currently tested'
                                  'resdcn_34 | resdcn_50 | resfpndcn_34 |'
                                  'dla_34 | hrnet_32')
    self.parser.add_argument('--head_conv', type=int, default=-1,
                             help='conv layer channels for output head'
                                  '0 for no conv layer'
                                  '-1 for default setting: '
                                  '256 for resnets and 256 for dla.')
    self.parser.add_argument('--down_ratio', type=int, default=4,
                             help='output stride. Currently only supports 4.')

    # input
    self.parser.add_argument('--input_res', type=int, default=-1, 
                             help='input height and width. -1 for default from '
                             'dataset. Will be overriden by input_h | input_w')
    self.parser.add_argument('--input_h', type=int, default=-1, 
                             help='input height. -1 for default from dataset.')
    self.parser.add_argument('--input_w', type=int, default=-1, 
                             help='input width. -1 for default from dataset.')
    
    # train
    self.parser.add_argument('--lr', type=float, default=1e-4,
                             help='learning rate for batch size 32.')
    self.parser.add_argument('--lr_step', type=str, default='20,27',
                             help='drop learning rate by 10.')
    self.parser.add_argument('--num_epochs', type=int, default=30,
                             help='total training epochs.')
    self.parser.add_argument('--batch_size', type=int, default=12,
                             help='batch size')
    self.parser.add_argument('--master_batch_size', type=int, default=-1,
                             help='batch size on the master gpu.')
    self.parser.add_argument('--num_iters', type=int, default=-1,
                             help='default: #samples / batch_size.')
    self.parser.add_argument('--val_intervals', type=int, default=5,
                             help='number of epochs to run validation.')
    self.parser.add_argument('--trainval', action='store_true',
                             help='include validation in training and '
                                  'test on test set')

    # test
    self.parser.add_argument('--K', type=int, default=128,
                             help='max number of output objects.') 
    self.parser.add_argument('--not_prefetch_test', action='store_true',
                             help='not use parallal data pre-processing.')
    self.parser.add_argument('--fix_res', action='store_true',
                             help='fix testing resolution or keep '
                                  'the original resolution')
    self.parser.add_argument('--keep_res', action='store_true',
                             help='keep the original resolution'
                                  ' during validation.')
    # tracking
    self.parser.add_argument('--test_mot16', default=False, help='test mot16')
    self.parser.add_argument('--val_mot15', default=False, help='val mot15')
    self.parser.add_argument('--test_mot15', default=False, help='test mot15')
    self.parser.add_argument('--val_mot16', default=False, help='val mot16 or mot15')
    self.parser.add_argument('--test_mot17', default=False, help='test mot17')
    self.parser.add_argument('--val_mot17', default=False, help='val mot17')
    self.parser.add_argument('--val_mot20', default=False, help='val mot20')
    self.parser.add_argument('--test_mot20', default=False, help='test mot20')
    self.parser.add_argument('--conf_thres', type=float, default=0.6, help='confidence thresh for tracking')
    self.parser.add_argument('--det_thres', type=float, default=0.3, help='confidence thresh for detection')
    self.parser.add_argument('--nms_thres', type=float, default=0.4, help='iou thresh for nms')
    self.parser.add_argument('--track_buffer', type=int, default=30, help='tracking buffer')
    self.parser.add_argument('--min-box-area', type=float, default=200, help='filter out tiny boxes')
    self.parser.add_argument('--input-video', type=str, default='../videos/MOT16-03.mp4', help='path to the input video')
    self.parser.add_argument('--output-format', type=str, default='video', help='video or text')
    self.parser.add_argument('--output-root', type=str, default='../results', help='expected output root path')

    # mot
    self.parser.add_argument('--data_cfg', type=str,
                             default='../src/lib/cfg/data.json',
                             help='load data from cfg')
    self.parser.add_argument('--data_dir', type=str, default='/data/yfzhang/MOT/JDE')

    # loss
    self.parser.add_argument('--mse_loss', action='store_true',
                             help='use mse loss or focal loss to train '
                                  'keypoint heatmaps.')

    self.parser.add_argument('--reg_loss', default='l1',
                             help='regression loss: sl1 | l1 | l2')
    self.parser.add_argument('--hm_weight', type=float, default=1,
                             help='loss weight for keypoint heatmaps.')
    self.parser.add_argument('--off_weight', type=float, default=1,
                             help='loss weight for keypoint local offsets.')
    self.parser.add_argument('--wh_weight', type=float, default=0.1,
                             help='loss weight for bounding box size.')
    self.parser.add_argument('--id_loss', default='ce',
                             help='reid loss: ce | triplet')
    self.parser.add_argument('--id_weight', type=float, default=1,
                             help='loss weight for id')
    self.parser.add_argument('--reid_dim', type=int, default=512,
                             help='feature dim for reid')

    self.parser.add_argument('--norm_wh', action='store_true',
                             help='L1(\hat(y) / y, 1) or L1(\hat(y), y)')
    self.parser.add_argument('--dense_wh', action='store_true',
                             help='apply weighted regression near center or '
                                  'just apply regression on center point.')
    self.parser.add_argument('--cat_spec_wh', action='store_true',
                             help='category specific bounding box size.')
    self.parser.add_argument('--not_reg_offset', action='store_true',
                             help='not regress local offset.')