in utils_cv/tracking/references/fairmot/datasets/dataset/jde.py [0:0]
def get_data(self, img_path, label_path):
height = self.height
width = self.width
img = cv2.imread(img_path) # BGR
if img is None:
raise ValueError('File corrupt {}'.format(img_path))
augment_hsv = True
if self.augment and augment_hsv:
# SV augmentation by 50%
fraction = 0.50
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
S = img_hsv[:, :, 1].astype(np.float32)
V = img_hsv[:, :, 2].astype(np.float32)
a = (random.random() * 2 - 1) * fraction + 1
S *= a
if a > 1:
np.clip(S, a_min=0, a_max=255, out=S)
a = (random.random() * 2 - 1) * fraction + 1
V *= a
if a > 1:
np.clip(V, a_min=0, a_max=255, out=V)
img_hsv[:, :, 1] = S.astype(np.uint8)
img_hsv[:, :, 2] = V.astype(np.uint8)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
h, w, _ = img.shape
img, ratio, padw, padh = letterbox(img, height=height, width=width)
# Load labels
if os.path.isfile(label_path):
labels0 = np.loadtxt(label_path, dtype=np.float32).reshape(-1, 6)
# Normalized xywh to pixel xyxy format
labels = labels0.copy()
labels[:, 2] = ratio * w * (labels0[:, 2] - labels0[:, 4] / 2) + padw
labels[:, 3] = ratio * h * (labels0[:, 3] - labels0[:, 5] / 2) + padh
labels[:, 4] = ratio * w * (labels0[:, 2] + labels0[:, 4] / 2) + padw
labels[:, 5] = ratio * h * (labels0[:, 3] + labels0[:, 5] / 2) + padh
else:
labels = np.array([])
# Augment image and labels
if self.augment:
img, labels, M = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.50, 1.20))
plotFlag = False
if plotFlag:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.figure(figsize=(50, 50))
plt.imshow(img[:, :, ::-1])
plt.plot(labels[:, [2, 4, 4, 2, 2]].T, labels[:, [3, 3, 5, 5, 3]].T, '.-')
plt.axis('off')
plt.savefig('test.jpg')
time.sleep(10)
nL = len(labels)
if nL > 0:
# convert xyxy to xywh
labels[:, 2:6] = xyxy2xywh(labels[:, 2:6].copy()) # / height
labels[:, 2] /= width
labels[:, 3] /= height
labels[:, 4] /= width
labels[:, 5] /= height
if self.augment:
# random left-right flip
lr_flip = True
if lr_flip & (random.random() > 0.5):
img = np.fliplr(img)
if nL > 0:
labels[:, 2] = 1 - labels[:, 2]
img = np.ascontiguousarray(img[:, :, ::-1]) # BGR to RGB
if self.transforms is not None:
img = self.transforms(img)
return img, labels, img_path, (h, w)