def _coco_remove_images_without_annotations()

in utils_cv/detection/references/coco_utils.py [0:0]


def _coco_remove_images_without_annotations(dataset, cat_list=None):
    def _has_only_empty_bbox(anno):
        return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)

    def _count_visible_keypoints(anno):
        return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)

    min_keypoints_per_image = 10

    def _has_valid_annotation(anno):
        # if it's empty, there is no annotation
        if len(anno) == 0:
            return False
        # if all boxes have close to zero area, there is no annotation
        if _has_only_empty_bbox(anno):
            return False
        # keypoints task have a slight different critera for considering
        # if an annotation is valid
        if "keypoints" not in anno[0]:
            return True
        # for keypoint detection tasks, only consider valid images those
        # containing at least min_keypoints_per_image
        if _count_visible_keypoints(anno) >= min_keypoints_per_image:
            return True
        return False

    assert isinstance(dataset, torchvision.datasets.CocoDetection)
    ids = []
    for ds_idx, img_id in enumerate(dataset.ids):
        ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
        anno = dataset.coco.loadAnns(ann_ids)
        if cat_list:
            anno = [obj for obj in anno if obj["category_id"] in cat_list]
        if _has_valid_annotation(anno):
            ids.append(ds_idx)

    dataset = torch.utils.data.Subset(dataset, ids)
    return dataset