dowhy/utils/dgps/cubic_dgp.py [63:85]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.weights['effect_modifier=>outcome'] = self.generate_weights( (len(self.effect_modifier), len(self.outcome)) )
        self.weights['treatment=>outcome'] = self.generate_weights( (len(self.treatment), len(self.outcome)) )

        self.bias['confounder=>treatment'] = self.generate_bias( len(self.treatment) )
        self.bias['confounder=>outcome'] = self.generate_bias( len(self.outcome) )

    def generate_weights(self, dimensions):
        return np.random.randn(*dimensions)

    def generate_bias(self, dimensions):
        return np.random.randn(dimensions)

    def __str__(self):
        rep = super().__str__()

        header = """
        Cubic Data Generating Process
        ------------------------------
        """

        rep = header + rep

        return rep
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



dowhy/utils/dgps/linear_dgp.py [44:66]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.weights['effect_modifier=>outcome'] = self.generate_weights( (len(self.effect_modifier), len(self.outcome)) )
        self.weights['treatment=>outcome'] = self.generate_weights( (len(self.treatment), len(self.outcome)) )

        self.bias['confounder=>treatment'] = self.generate_bias( len(self.treatment) )
        self.bias['confounder=>outcome'] = self.generate_bias( len(self.outcome) )

    def generate_weights(self, dimensions):
        return np.random.randn(*dimensions)

    def generate_bias(self, dimensions):
        return np.random.randn(dimensions)

    def __str__(self):
        rep = super().__str__()

        header = """
        Linear Data Generating Process
        -------------------------------
        """

        rep = header + rep

        return rep
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



