in dowhy/causal_estimators/econml.py [0:0]
def _estimate_effect(self):
n_samples = self._treatment.shape[0]
X = None # Effect modifiers
W = None # common causes/ confounders
Z = None # Instruments
Y = self._outcome
T = self._treatment
if self._effect_modifiers is not None:
X = self._effect_modifiers
if self._observed_common_causes_names:
W = self._observed_common_causes
if self.estimating_instrument_names:
Z = self._estimating_instruments
named_data_args = {'Y': Y, 'T': T, 'X': X, 'W': W, 'Z': Z}
if self.estimator is None:
estimator_class = self._get_econml_class_object(self._econml_methodname)
self.estimator = estimator_class(**self.method_params["init_params"])
# Calling the econml estimator's fit method
estimator_argspec = inspect.getfullargspec(
inspect.unwrap(self.estimator.fit))
# As of v0.9, econml has some kewyord only arguments
estimator_named_args = estimator_argspec.args + estimator_argspec.kwonlyargs
estimator_data_args = {
arg: named_data_args[arg] for arg in named_data_args.keys() if arg in estimator_named_args
}
if self.method_params["fit_params"] is not False:
self.estimator.fit(**estimator_data_args,
**self.method_params["fit_params"])
X_test = X
n_target_units = n_samples
if X is not None:
if type(self._target_units) is pd.DataFrame:
X_test = self._target_units
elif callable(self._target_units):
filtered_rows = self._data.where(self._target_units)
boolean_criterion = np.array(filtered_rows.notnull().iloc[:,0])
X_test = X[boolean_criterion]
n_target_units = X_test.shape[0]
# Changing shape to a list for a singleton value
if type(self._control_value) is not list:
self._control_value = [self._control_value]
if type(self._treatment_value) is not list:
self._treatment_value = [self._treatment_value]
T0_test = np.repeat([self._control_value], n_target_units, axis=0)
T1_test = np.repeat([self._treatment_value], n_target_units, axis=0)
est = self.estimator.effect(X_test, T0=T0_test, T1=T1_test)
ate = np.mean(est)
self.effect_intervals = None
if self._confidence_intervals:
self.effect_intervals = self.estimator.effect_interval(
X_test, T0=T0_test, T1=T1_test,
alpha=1-self.confidence_level)
estimate = CausalEstimate(estimate=ate,
control_value=self._control_value,
treatment_value=self._treatment_value,
target_estimand=self._target_estimand,
realized_estimand_expr=self.symbolic_estimator,
cate_estimates=est,
effect_intervals=self.effect_intervals,
_estimator_object=self.estimator)
return estimate