in dowhy/causal_estimators/regression_estimator.py [0:0]
def _build_features(self, treatment_values=None, data_df=None):
# Using all data by default
if data_df is None:
data_df = self._data
treatment_vals = pd.get_dummies(self._treatment, drop_first=True)
observed_common_causes_vals = self._observed_common_causes
effect_modifiers_vals = self._effect_modifiers
else:
treatment_vals = pd.get_dummies(data_df[self._treatment_name], drop_first=True)
if len(self._observed_common_causes_names)>0:
observed_common_causes_vals = data_df[self._observed_common_causes_names]
observed_common_causes_vals = pd.get_dummies(observed_common_causes_vals, drop_first=True)
if self._effect_modifier_names:
effect_modifiers_vals = data_df[self._effect_modifier_names]
effect_modifiers_vals = pd.get_dummies(effect_modifiers_vals, drop_first=True)
# Fixing treatment value to the specified value, if provided
if treatment_values is not None:
treatment_vals = treatment_values
if type(treatment_vals) is not np.ndarray:
treatment_vals = treatment_vals.to_numpy()
# treatment_vals and data_df should have same number of rows
if treatment_vals.shape[0] != data_df.shape[0]:
raise ValueError("Provided treatment values and dataframe should have the same length.")
# Bulding the feature matrix
n_treatment_cols = 1 if len(treatment_vals.shape) == 1 else treatment_vals.shape[1]
n_samples = treatment_vals.shape[0]
treatment_2d = treatment_vals.reshape((n_samples, n_treatment_cols))
if len(self._observed_common_causes_names) > 0:
features = np.concatenate((treatment_2d, observed_common_causes_vals),
axis=1)
else:
features = treatment_2d
if self._effect_modifier_names:
for i in range(treatment_2d.shape[1]):
curr_treatment = treatment_2d[:,i]
new_features = curr_treatment[:, np.newaxis] * effect_modifiers_vals.to_numpy()
features = np.concatenate((features, new_features), axis=1)
features = features.astype(float, copy=False) # converting to float in case of binary treatment and no other variables
features = sm.add_constant(features, has_constant='add') # to add an intercept term
return features