graspologic/pipeline/embed/adjacency_spectral_embedding.py [206:224]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    results_arr: np.ndarray

    if elbow_cut is None:
        if isinstance(results, tuple) or graph.is_directed():
            results_arr = np.concatenate(results, axis=1)
        else:
            results_arr = results
    else:
        column_index = _index_of_elbow(embedder.singular_values_, elbow_cut)
        if isinstance(results, tuple):
            left, right = results
            left = left[:, :column_index]
            right = right[:, :column_index]
            results_arr = np.concatenate((left, right), axis=1)
        else:
            results_arr = results[:, :column_index]

    embeddings = Embeddings(node_labels, results_arr)
    return embeddings
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



graspologic/pipeline/embed/laplacian_spectral_embedding.py [220:238]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    results_arr: np.ndarray

    if elbow_cut is None:
        if isinstance(results, tuple) or graph.is_directed():
            results_arr = np.concatenate(results, axis=1)
        else:
            results_arr = results
    else:
        column_index = _index_of_elbow(embedder.singular_values_, elbow_cut)
        if isinstance(results, tuple):
            left, right = results
            left = left[:, :column_index]
            right = right[:, :column_index]
            results_arr = np.concatenate((left, right), axis=1)
        else:
            results_arr = results[:, :column_index]

    embeddings = Embeddings(node_labels, results_arr)
    return embeddings
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



