def main()

in pose_estimation/train.py [0:0]


def main():
    args = parse_args()
    reset_config(config, args)

    logger, final_output_dir, tb_log_dir = create_logger(
        config, args.cfg, 'train')

    logger.info(pprint.pformat(args))
    logger.info(pprint.pformat(config))

    # cudnn related setting
    cudnn.benchmark = config.CUDNN.BENCHMARK
    torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC
    torch.backends.cudnn.enabled = config.CUDNN.ENABLED

    model = eval('models.'+config.MODEL.NAME+'.get_pose_net')(
        config, is_train=True
    )

    # copy model file
    this_dir = os.path.dirname(__file__)
    shutil.copy2(
        os.path.join(this_dir, '../lib/models', config.MODEL.NAME + '.py'),
        final_output_dir)

    writer_dict = {
        'writer': SummaryWriter(log_dir=tb_log_dir),
        'train_global_steps': 0,
        'valid_global_steps': 0,
    }

    dump_input = torch.rand((config.TRAIN.BATCH_SIZE,
                             3,
                             config.MODEL.IMAGE_SIZE[1],
                             config.MODEL.IMAGE_SIZE[0]))
    writer_dict['writer'].add_graph(model, (dump_input, ), verbose=False)

    gpus = [int(i) for i in config.GPUS.split(',')]
    model = torch.nn.DataParallel(model, device_ids=gpus).cuda()

    # define loss function (criterion) and optimizer
    criterion = JointsMSELoss(
        use_target_weight=config.LOSS.USE_TARGET_WEIGHT
    ).cuda()

    optimizer = get_optimizer(config, model)

    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR
    )

    # Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    train_dataset = eval('dataset.'+config.DATASET.DATASET)(
        config,
        config.DATASET.ROOT,
        config.DATASET.TRAIN_SET,
        True,
        transforms.Compose([
            transforms.ToTensor(),
            normalize,
        ])
    )
    valid_dataset = eval('dataset.'+config.DATASET.DATASET)(
        config,
        config.DATASET.ROOT,
        config.DATASET.TEST_SET,
        False,
        transforms.Compose([
            transforms.ToTensor(),
            normalize,
        ])
    )

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.TRAIN.BATCH_SIZE*len(gpus),
        shuffle=config.TRAIN.SHUFFLE,
        num_workers=config.WORKERS,
        pin_memory=True
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=config.TEST.BATCH_SIZE*len(gpus),
        shuffle=False,
        num_workers=config.WORKERS,
        pin_memory=True
    )

    best_perf = 0.0
    best_model = False
    for epoch in range(config.TRAIN.BEGIN_EPOCH, config.TRAIN.END_EPOCH):
        lr_scheduler.step()

        # train for one epoch
        train(config, train_loader, model, criterion, optimizer, epoch,
              final_output_dir, tb_log_dir, writer_dict)


        # evaluate on validation set
        perf_indicator = validate(config, valid_loader, valid_dataset, model,
                                  criterion, final_output_dir, tb_log_dir,
                                  writer_dict)

        if perf_indicator > best_perf:
            best_perf = perf_indicator
            best_model = True
        else:
            best_model = False

        logger.info('=> saving checkpoint to {}'.format(final_output_dir))
        save_checkpoint({
            'epoch': epoch + 1,
            'model': get_model_name(config),
            'state_dict': model.state_dict(),
            'perf': perf_indicator,
            'optimizer': optimizer.state_dict(),
        }, best_model, final_output_dir)

    final_model_state_file = os.path.join(final_output_dir,
                                          'final_state.pth.tar')
    logger.info('saving final model state to {}'.format(
        final_model_state_file))
    torch.save(model.module.state_dict(), final_model_state_file)
    writer_dict['writer'].close()