def train()

in lib/core/function.py [0:0]


def train(config, train_loader, model, criterion, optimizer, epoch,
          output_dir, tb_log_dir, writer_dict):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acc = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target, target_weight, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
        output = model(input)
        target = target.cuda(non_blocking=True)
        target_weight = target_weight.cuda(non_blocking=True)

        loss = criterion(output, target, target_weight)

        # compute gradient and do update step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        losses.update(loss.item(), input.size(0))

        _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(),
                                         target.detach().cpu().numpy())
        acc.update(avg_acc, cnt)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.PRINT_FREQ == 0:
            msg = 'Epoch: [{0}][{1}/{2}]\t' \
                  'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
                  'Speed {speed:.1f} samples/s\t' \
                  'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \
                  'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \
                  'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                      epoch, i, len(train_loader), batch_time=batch_time,
                      speed=input.size(0)/batch_time.val,
                      data_time=data_time, loss=losses, acc=acc)
            logger.info(msg)

            writer = writer_dict['writer']
            global_steps = writer_dict['train_global_steps']
            writer.add_scalar('train_loss', losses.val, global_steps)
            writer.add_scalar('train_acc', acc.val, global_steps)
            writer_dict['train_global_steps'] = global_steps + 1

            prefix = '{}_{}'.format(os.path.join(output_dir, 'train'), i)
            save_debug_images(config, input, meta, target, pred*4, output,
                              prefix)