in lib/dataset/coco.py [0:0]
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array([img_kpts[k]['keypoints']
for k in range(len(img_kpts))])
key_points = np.zeros(
(_key_points.shape[0], self.num_joints * 3), dtype=np.float)
for ipt in range(self.num_joints):
key_points[:, ipt * 3 + 0] = _key_points[:, ipt, 0]
key_points[:, ipt * 3 + 1] = _key_points[:, ipt, 1]
key_points[:, ipt * 3 + 2] = _key_points[:, ipt, 2] # keypoints score.
result = [{'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': list(key_points[k]),
'score': img_kpts[k]['score'],
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
} for k in range(len(img_kpts))]
cat_results.extend(result)
return cat_results