nni/nas/pytorch/utils.py [32:141]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def to_device(obj, device):
    """
    Move a tensor, tuple, list, or dict onto device.
    """
    if torch.is_tensor(obj):
        return obj.to(device)
    if isinstance(obj, tuple):
        return tuple(to_device(t, device) for t in obj)
    if isinstance(obj, list):
        return [to_device(t, device) for t in obj]
    if isinstance(obj, dict):
        return {k: to_device(v, device) for k, v in obj.items()}
    if isinstance(obj, (int, float, str)):
        return obj
    raise ValueError("'%s' has unsupported type '%s'" % (obj, type(obj)))


def to_list(arr):
    if torch.is_tensor(arr):
        return arr.cpu().numpy().tolist()
    if isinstance(arr, np.ndarray):
        return arr.tolist()
    if isinstance(arr, (list, tuple)):
        return list(arr)
    return arr


class AverageMeterGroup:
    """
    Average meter group for multiple average meters.
    """

    def __init__(self):
        self.meters = OrderedDict()

    def update(self, data):
        """
        Update the meter group with a dict of metrics.
        Non-exist average meters will be automatically created.
        """
        for k, v in data.items():
            if k not in self.meters:
                self.meters[k] = AverageMeter(k, ":4f")
            self.meters[k].update(v)

    def __getattr__(self, item):
        return self.meters[item]

    def __getitem__(self, item):
        return self.meters[item]

    def __str__(self):
        return "  ".join(str(v) for v in self.meters.values())

    def summary(self):
        """
        Return a summary string of group data.
        """
        return "  ".join(v.summary() for v in self.meters.values())


class AverageMeter:
    """
    Computes and stores the average and current value.

    Parameters
    ----------
    name : str
        Name to display.
    fmt : str
        Format string to print the values.
    """

    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        """
        Reset the meter.
        """
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        """
        Update with value and weight.

        Parameters
        ----------
        val : float or int
            The new value to be accounted in.
        n : int
            The weight of the new value.
        """
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = '{name}: {avg' + self.fmt + '}'
        return fmtstr.format(**self.__dict__)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



nni/retiarii/oneshot/pytorch/utils.py [15:124]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def to_device(obj, device):
    """
    Move a tensor, tuple, list, or dict onto device.
    """
    if torch.is_tensor(obj):
        return obj.to(device)
    if isinstance(obj, tuple):
        return tuple(to_device(t, device) for t in obj)
    if isinstance(obj, list):
        return [to_device(t, device) for t in obj]
    if isinstance(obj, dict):
        return {k: to_device(v, device) for k, v in obj.items()}
    if isinstance(obj, (int, float, str)):
        return obj
    raise ValueError("'%s' has unsupported type '%s'" % (obj, type(obj)))


def to_list(arr):
    if torch.is_tensor(arr):
        return arr.cpu().numpy().tolist()
    if isinstance(arr, np.ndarray):
        return arr.tolist()
    if isinstance(arr, (list, tuple)):
        return list(arr)
    return arr


class AverageMeterGroup:
    """
    Average meter group for multiple average meters.
    """

    def __init__(self):
        self.meters = OrderedDict()

    def update(self, data):
        """
        Update the meter group with a dict of metrics.
        Non-exist average meters will be automatically created.
        """
        for k, v in data.items():
            if k not in self.meters:
                self.meters[k] = AverageMeter(k, ":4f")
            self.meters[k].update(v)

    def __getattr__(self, item):
        return self.meters[item]

    def __getitem__(self, item):
        return self.meters[item]

    def __str__(self):
        return "  ".join(str(v) for v in self.meters.values())

    def summary(self):
        """
        Return a summary string of group data.
        """
        return "  ".join(v.summary() for v in self.meters.values())


class AverageMeter:
    """
    Computes and stores the average and current value.

    Parameters
    ----------
    name : str
        Name to display.
    fmt : str
        Format string to print the values.
    """

    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        """
        Reset the meter.
        """
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        """
        Update with value and weight.

        Parameters
        ----------
        val : float or int
            The new value to be accounted in.
        n : int
            The weight of the new value.
        """
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = '{name}: {avg' + self.fmt + '}'
        return fmtstr.format(**self.__dict__)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



