in onnxconverter_common/auto_mixed_precision.py [0:0]
def auto_convert_mixed_precision(model, feed_dict, validate_fn=None, rtol=None, atol=None, keep_io_types=False):
"""
Automatically converts a model to mixed precision, excluding the minimum number of nodes required to
ensure valudate_fn returns True and/or results are equal according to rtol/atol
"""
if rtol is None and atol is not None:
rtol = 1e-5
if atol is None and rtol is not None:
atol = 1e-8
if rtol is None and validate_fn is None:
raise ValueError("Argument `validate_fn` and `rtol` cannot both be `None`.")
def validate(res1, res2):
if validate_fn is not None and not validate_fn(res1, res2):
return False
if rtol is not None:
for r1, r2 in zip(res1, res2):
if not np.allclose(r1, r2, rtol, atol):
return False
return True
model0 = onnx.shape_inference.infer_shapes(model)
model0 = add_missing_dtypes_using_ort(model0, feed_dict)
res0 = get_tensor_values_using_ort(model0, feed_dict)
if not keep_io_types:
feed_dict = {k: v.astype(np.float16) if v.dtype == np.float32 else v for k, v in feed_dict.items()}
if not validate(res0, res0):
raise ValueError("validation failed for original fp32 model")
node_names = [n.name for n in model0.graph.node if n.op_type not in ["Loop", "If", "Scan"]]
def run_attempt(node_block_list, return_model=False):
print(node_block_list)
model = float16.convert_float_to_float16(copy.deepcopy(model0), node_block_list=node_block_list,
keep_io_types=keep_io_types, disable_shape_infer=True)
res1 = get_tensor_values_using_ort(model, feed_dict)
if return_model:
return validate(res0, res1), model
else:
valid = validate(res0, res1)
print(valid)
return valid
if not run_attempt(node_names):
raise ValueError("validation failed for model with all nodes in node_block_list")
print("Sanity checks passed. Starting autoconvert.")
segments = SegmentList(node_names)
i = 0
while segments.get_largest() is not None:
seg = segments.get_largest()
nodes_to_try = segments.get_nodes(seg)
i += 1
print("Running attempt %d excluding conversion of %s nodes" % (i, len(nodes_to_try)))
if run_attempt(nodes_to_try):
seg.good = True
print("Attempt succeeded.")
else:
print("Attempt failed.")
if seg.size == 1:
seg.bad = True
else:
seg.split()
print(segments)
print("Done:", segments.get_nodes())
valid, model = run_attempt(segments.get_nodes(), return_model=True)
if not valid:
raise ValueError("validation failed for final fp16 model")
print("Final model validated successfully.")
return model