in R/step3_training_evaluation.R [177:198]
evaluate_model <- function(observed, predicted, model) {
mean_observed <- mean(observed)
se <- (observed - predicted)^2
ae <- abs(observed - predicted)
sem <- (observed - mean_observed)^2
aem <- abs(observed - mean_observed)
mae <- mean(ae)
rmse <- sqrt(mean(se))
rae <- sum(ae) / sum(aem)
rse <- sum(se) / sum(sem)
rsq <- 1 - rse
metrics <- c("Mean Absolute Error" = mae,
"Root Mean Squared Error" = rmse,
"Relative Absolute Error" = rae,
"Relative Squared Error" = rse,
"Coefficient of Determination" = rsq)
print(model)
print(metrics)
print("Summary statistics of the absolute error")
print(summary(abs(observed-predicted)))
return(metrics)
}