def test()

in py2/train.py [0:0]


def test(epoch, niter):
    def truths_length(truths):
        for i in range(50):
            if truths[i][1] == 0:
                return i

    # Set the module in evaluation mode (turn off dropout, batch normalization etc.)        
    model.eval()

    # Parameters
    num_classes          = model.num_classes
    anchors              = model.anchors
    num_anchors          = model.num_anchors
    testtime             = True
    testing_error_trans  = 0.0
    testing_error_angle  = 0.0
    testing_error_pixel  = 0.0
    testing_samples      = 0.0
    errs_2d              = []
    errs_3d              = []
    errs_trans           = []
    errs_angle           = []
    errs_corner2D        = []

    logging("   Testing...")
    logging("   Number of test samples: %d" % len(test_loader.dataset))
    notpredicted = 0
    # Iterate through test examples 
    for batch_idx, (data, target) in enumerate(test_loader):
        t1 = time.time()
        # Pass the data to GPU
        if use_cuda:
            data = data.cuda()
            target = target.cuda()
        # Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
        data = Variable(data, volatile=True)
        t2 = time.time()
        # Formward pass
        output = model(data).data  
        t3 = time.time()
        # Using confidence threshold, eliminate low-confidence predictions
        all_boxes = get_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors)        
        t4 = time.time()
        # Iterate through all batch elements
        for i in range(output.size(0)):
            # For each image, get all the predictions
            boxes   = all_boxes[i]
            # For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
            truths  = target[i].view(-1, 21)
            # Get how many object are present in the scene
            num_gts = truths_length(truths)

            # Iterate through each ground-truth object
            for k in range(num_gts):
                box_gt        = [truths[k][1], truths[k][2], truths[k][3], truths[k][4], truths[k][5], truths[k][6], 
                                truths[k][7], truths[k][8], truths[k][9], truths[k][10], truths[k][11], truths[k][12], 
                                truths[k][13], truths[k][14], truths[k][15], truths[k][16], truths[k][17], truths[k][18], 1.0, 1.0, truths[k][0]]
                best_conf_est = -1

                # If the prediction has the highest confidence, choose it as our prediction
                for j in range(len(boxes)):
                    if boxes[j][18] > best_conf_est:
                        best_conf_est = boxes[j][18]
                        box_pr        = boxes[j]
                        match         = corner_confidence9(box_gt[:18], torch.FloatTensor(boxes[j][:18]))

                # Denormalize the corner predictions 
                corners2D_gt = np.array(np.reshape(box_gt[:18], [9, 2]), dtype='float32')
                corners2D_pr = np.array(np.reshape(box_pr[:18], [9, 2]), dtype='float32')
                corners2D_gt[:, 0] = corners2D_gt[:, 0] * im_width
                corners2D_gt[:, 1] = corners2D_gt[:, 1] * im_height               
                corners2D_pr[:, 0] = corners2D_pr[:, 0] * im_width
                corners2D_pr[:, 1] = corners2D_pr[:, 1] * im_height

                # Compute corner prediction error
                corner_norm = np.linalg.norm(corners2D_gt - corners2D_pr, axis=1)
                corner_dist = np.mean(corner_norm)
                errs_corner2D.append(corner_dist)

                # Compute [R|t] by pnp
                R_gt, t_gt = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'),  corners2D_gt, np.array(internal_calibration, dtype='float32'))
                R_pr, t_pr = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'),  corners2D_pr, np.array(internal_calibration, dtype='float32'))

                # Compute errors

                # Compute translation error
                trans_dist   = np.sqrt(np.sum(np.square(t_gt - t_pr)))
                errs_trans.append(trans_dist)

                # Compute angle error
                angle_dist   = calcAngularDistance(R_gt, R_pr)
                errs_angle.append(angle_dist)

                # Compute pixel error
                Rt_gt        = np.concatenate((R_gt, t_gt), axis=1)
                Rt_pr        = np.concatenate((R_pr, t_pr), axis=1)
                proj_2d_gt   = compute_projection(vertices, Rt_gt, internal_calibration) 
                proj_2d_pred = compute_projection(vertices, Rt_pr, internal_calibration) 
                norm         = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
                pixel_dist   = np.mean(norm)
                errs_2d.append(pixel_dist)

                # Compute 3D distances
                transform_3d_gt   = compute_transformation(vertices, Rt_gt) 
                transform_3d_pred = compute_transformation(vertices, Rt_pr)  
                norm3d            = np.linalg.norm(transform_3d_gt - transform_3d_pred, axis=0)
                vertex_dist       = np.mean(norm3d)    
                errs_3d.append(vertex_dist)  

                # Sum errors
                testing_error_trans  += trans_dist
                testing_error_angle  += angle_dist
                testing_error_pixel  += pixel_dist
                testing_samples      += 1

        t5 = time.time()

    # Compute 2D projection, 6D pose and 5cm5degree scores
    px_threshold = 5
    acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (len(errs_2d)+eps)
    acc3d = len(np.where(np.array(errs_3d) <= vx_threshold)[0]) * 100. / (len(errs_3d)+eps)
    acc5cm5deg = len(np.where((np.array(errs_trans) <= 0.05) & (np.array(errs_angle) <= 5))[0]) * 100. / (len(errs_trans)+eps)
    corner_acc = len(np.where(np.array(errs_corner2D) <= px_threshold)[0]) * 100. / (len(errs_corner2D)+eps)
    mean_err_2d = np.mean(errs_2d)
    mean_corner_err_2d = np.mean(errs_corner2D)
    nts = float(testing_samples)
    
    if testtime:
        print('-----------------------------------')
        print('  tensor to cuda : %f' % (t2 - t1))
        print('         predict : %f' % (t3 - t2))
        print('get_region_boxes : %f' % (t4 - t3))
        print('            eval : %f' % (t5 - t4))
        print('           total : %f' % (t5 - t1))
        print('-----------------------------------')

    # Print test statistics
    logging("   Mean corner error is %f" % (mean_corner_err_2d))
    logging('   Acc using {} px 2D Projection = {:.2f}%'.format(px_threshold, acc))
    logging('   Acc using {} vx 3D Transformation = {:.2f}%'.format(vx_threshold, acc3d))
    logging('   Acc using 5 cm 5 degree metric = {:.2f}%'.format(acc5cm5deg))
    logging('   Translation error: %f, angle error: %f' % (testing_error_trans/(nts+eps), testing_error_angle/(nts+eps)) )

    # Register losses and errors for saving later on
    testing_iters.append(niter)
    testing_errors_trans.append(testing_error_trans/(nts+eps))
    testing_errors_angle.append(testing_error_angle/(nts+eps))
    testing_errors_pixel.append(testing_error_pixel/(nts+eps))
    testing_accuracies.append(acc)