tensorwatch/model_graph/hiddenlayer/graph.py (7 lines): - line 39: "layer_overrides": { #TODO: change names of these keys to same as dot params - line 85: self.name = name # TODO: clarify the use of op vs name vs title - line 232: # TODO: If an edge exists with a different label, still don't add it again. - line 263: # TODO: Not handling the case of multiple incoming nodes yet - line 297: # TODO: check specifically for output_shape is not generic. Consider refactoring. - line 325: # TODO: This might fail if the ID becomes too long - line 396: # TODO: assert on acceptable format values tensorwatch/watcher_base.py (5 lines): - line 66: # TODO: what if devices were specified AND stream exist in cache? - line 149: # TODO: throw error? - line 161: # TODO: remove list() call - currently needed because of error dictionary - line 196: # TODO: check eval_return.is_valid ? - line 213: #TODO: to enable delete we need to protect iteration in set_vars tensorwatch/model_graph/hiddenlayer/transforms.py (4 lines): - line 28: # TODO: validate that op and name are valid - line 60: # TODO: validate op and name are valid - line 85: # TODO: Find last node in the sub-graph and get the output shape from it - line 193: # TODO: name is not tested yet tensorwatch/model_graph/hiddenlayer/pytorch_builder.py (4 lines): - line 57: # TODO: find a better way to extract output shape - line 58: # TODO: Assuming the node has one output. Update if we encounter a multi-output node. - line 98: # TODO: add input names to graph - line 133: # TODO: inputs = [i.unique() for i in node.inputs()] tensorwatch/model_graph/hiddenlayer/pytorch_builder_trace.py (3 lines): - line 64: with torch.onnx.set_training(model, False): # TODO: move outside of torch.onnx? - line 79: # TODO: add input names to graph - line 101: # # TODO: inputs = [i.unique() for i in node.inputs()] tensorwatch/model_graph/hiddenlayer/ge.py (3 lines): - line 66: # TODO: not implemented yet. This function is a placeholder - line 93: self.condition = condition # TODO: not implemented yet - line 141: # TODO: If more nodes than patterns, we should consider tensorwatch/model_graph/hiddenlayer/summary_graph.py (2 lines): - line 112: # TODO: This should be fixed in PyTorch 1.2.0, revisit when it's released - line 202: # TODO: Was this meant to be applied only to 'top_level_ops'? Also, it's not tensorwatch/plotly/line_plot.py (2 lines): - line 145: if ann: #TODO: yref should be y2 for different y axis - line 185: # TODO: avoid removing annotations for other streams tensorwatch/watcher.py (2 lines): - line 40: # TODO: can we do better? - line 50: # TODO: this method is duplicated in Watcher and WatcherClient tensorwatch/plotly/base_plotly_plot.py (2 lines): - line 78: # TODO: better way for below? - line 84: #TODO: save image, spawn browser? tensorwatch/utils.py (1 line): - line 161: # TODO: sync with AirSim utils.py tensorwatch/imagenet_utils.py (1 line): - line 9: transf = transforms.Compose([ #TODO: cache these transforms? tensorwatch/notebook_maker.py (1 line): - line 49: # TODO: shall we raise error if non str, bool, number (or its container) parameters? tensorwatch/image_utils.py (1 line): - line 34: # TODO allow config tensorwatch/saliency/inverter_util.py (1 line): - line 492: # convolution. TODO: Can this be done in groups, too? tensorwatch/evaler_utils.py (1 line): - line 156: # TODO: handle Pytorch and TF models separately tensorwatch/mpl/base_mpl_plot.py (1 line): - line 89: # TODO: may be we don't need all of below but none of them tensorwatch/saliency/saliency.py (1 line): - line 55: else: #TODO: guess layer for other networks? tensorwatch/mpl/line_plot.py (1 line): - line 164: if ann: #TODO: yref should be y2 for different y axis tensorwatch/zmq_wrapper.py (1 line): - line 95: # TODO: better way to raise this error? tensorwatch/watcher_client.py (1 line): - line 51: # TODO: this method is duplicated in Watcher and WatcherClient tensorwatch/vis_base.py (1 line): - line 112: #TODO: need better handling here? tensorwatch/model_graph/hiddenlayer/tf_builder.py (1 line): - line 119: # 2/ the stride used by convolutional and pooling layers (TODO: not fully working yet) tensorwatch/embeddings/tsne_utils.py (1 line): - line 12: #TODO: enable auto flattening tensorwatch/plotly/embeddings_plot.py (1 line): - line 63: stream_vis.stream_vis_args.clear() #TODO remove this