in System.Data/System/Data/SqlClient/TdsParser.cs [8041:8628]
internal Task TdsExecuteRPC(SqlCommand cmd, _SqlRPC[] rpcArray, int timeout, bool inSchema, SqlNotificationRequest notificationRequest, TdsParserStateObject stateObj, bool isCommandProc, bool sync = true,
TaskCompletionSource<object> completion = null, int startRpc = 0, int startParam = 0) {
bool firstCall = (completion == null);
bool releaseConnectionLock = false;
Debug.Assert(cmd != null, @"cmd cannot be null inside TdsExecuteRPC");
Debug.Assert(!firstCall || startRpc == 0, "startRpc is not 0 on first call");
Debug.Assert(!firstCall || startParam == 0, "startParam is not 0 on first call");
Debug.Assert(!firstCall || !_connHandler.ThreadHasParserLockForClose, "Thread should not already have connection lock");
Debug.Assert(firstCall || _connHandler._parserLock.ThreadMayHaveLock(), "Connection lock not taken after the first call");
try {
_SqlRPC rpcext = null;
int tempLen;
// SQLBUDT #20010853 - Promote, Commit and Rollback requests for
// delegated transactions often happen while there is an open result
// set, so we need to handle them by using a different MARS session,
// otherwise we'll write on the physical state objects while someone
// else is using it. When we don't have MARS enabled, we need to
// lock the physical state object to syncronize it's use at least
// until we increment the open results count. Once it's been
// incremented the delegated transaction requests will fail, so they
// won't stomp on anything.
if (firstCall) {
_connHandler._parserLock.Wait(canReleaseFromAnyThread:!sync);
releaseConnectionLock = true;
}
try {
// Ensure that connection is alive
if ((TdsParserState.Broken == State) || (TdsParserState.Closed == State)) {
throw ADP.ClosedConnectionError();
}
// This validation step MUST be done after locking the connection to guarantee we don't
// accidentally execute after the transaction has completed on a different thread.
if (firstCall) {
_asyncWrite = !sync;
_connHandler.CheckEnlistedTransactionBinding();
stateObj.SetTimeoutSeconds(timeout);
if ((!_fMARS) && (_physicalStateObj.HasOpenResult))
{
Bid.Trace("<sc.TdsParser.TdsExecuteRPC|ERR> Potential multi-threaded misuse of connection, non-MARs connection with an open result %d#\n", ObjectID);
}
stateObj.SniContext = SniContext.Snix_Execute;
if (_isYukon) {
WriteRPCBatchHeaders(stateObj, notificationRequest);
}
stateObj._outputMessageType = TdsEnums.MT_RPC;
}
for (int ii = startRpc; ii < rpcArray.Length; ii++) {
rpcext = rpcArray[ii];
if (startParam == 0 || ii > startRpc) {
if (rpcext.ProcID != 0 && _isShiloh) {
// Perf optimization for Shiloh and later,
Debug.Assert(rpcext.ProcID < 255, "rpcExec:ProcID can't be larger than 255");
WriteShort(0xffff, stateObj);
WriteShort((short)(rpcext.ProcID), stateObj);
}
else {
Debug.Assert(!ADP.IsEmpty(rpcext.rpcName), "must have an RPC name");
tempLen = rpcext.rpcName.Length;
WriteShort(tempLen, stateObj);
WriteString(rpcext.rpcName, tempLen, 0, stateObj);
}
// Options
WriteShort((short)rpcext.options, stateObj);
byte[] enclavePackage = cmd.enclavePackage != null ? cmd.enclavePackage.EnclavePackageBytes : null;
WriteEnclaveInfo(stateObj, enclavePackage);
}
// Stream out parameters
SqlParameter[] parameters = rpcext.parameters;
for (int i = (ii == startRpc) ? startParam : 0; i < parameters.Length; i++) {
// Debug.WriteLine("i: " + i.ToString(CultureInfo.InvariantCulture));
// parameters can be unnamed
SqlParameter param = parameters[i];
// Since we are reusing the parameters array, we cannot rely on length to indicate no of parameters.
if (param == null)
break; // End of parameters for this execute
// Throw an exception if ForceColumnEncryption is set on a parameter and the ColumnEncryption is not enabled on SqlConnection or SqlCommand
if (param.ForceColumnEncryption &&
!(cmd.ColumnEncryptionSetting == SqlCommandColumnEncryptionSetting.Enabled ||
(cmd.ColumnEncryptionSetting == SqlCommandColumnEncryptionSetting.UseConnectionSetting && cmd.Connection.IsColumnEncryptionSettingEnabled))) {
throw SQL.ParamInvalidForceColumnEncryptionSetting(param.ParameterName, rpcext.GetCommandTextOrRpcName());
}
// Check if the applications wants to force column encryption to avoid sending sensitive data to server
if (param.ForceColumnEncryption && param.CipherMetadata == null
&& (param.Direction == ParameterDirection.Input || param.Direction == ParameterDirection.InputOutput)) {
// Application wants a parameter to be encrypted before sending it to server, however server doesnt think this parameter needs encryption.
throw SQL.ParamUnExpectedEncryptionMetadata(param.ParameterName, rpcext.GetCommandTextOrRpcName());
}
// Validate parameters are not variable length without size and with null value. MDAC 66522
param.Validate(i, isCommandProc);
// type (parameter record stores the MetaType class which is a helper that encapsulates all the type information we need here)
MetaType mt = param.InternalMetaType;
if (mt.IsNewKatmaiType) {
WriteSmiParameter(param, i, 0 != (rpcext.paramoptions[i] & TdsEnums.RPC_PARAM_DEFAULT), stateObj);
continue;
}
if ((!_isShiloh && !mt.Is70Supported) ||
(!_isYukon && !mt.Is80Supported) ||
(!_isKatmai && !mt.Is90Supported)) {
throw ADP.VersionDoesNotSupportDataType(mt.TypeName);
}
object value = null;
bool isNull = true;
bool isSqlVal = false;
bool isDataFeed = false;
// if we have an output param, set the value to null so we do not send it across to the server
if (param.Direction == ParameterDirection.Output) {
isSqlVal = param.ParamaterIsSqlType; // We have to forward the TYPE info, we need to know what type we are returning. Once we null the paramater we will no longer be able to distinguish what type were seeing.
param.Value = null;
param.ParamaterIsSqlType = isSqlVal;
}
else {
value = param.GetCoercedValue();
isNull = param.IsNull;
if (!isNull) {
isSqlVal = param.CoercedValueIsSqlType;
isDataFeed = param.CoercedValueIsDataFeed;
}
}
WriteParameterName(param.ParameterNameFixed, stateObj);
// Write parameter status
stateObj.WriteByte(rpcext.paramoptions[i]);
// MaxLen field is only written out for non-fixed length data types
// use the greater of the two sizes for maxLen
int actualSize;
int size = mt.IsSizeInCharacters ? param.GetParameterSize() * 2 : param.GetParameterSize();
//for UDTs, we calculate the length later when we get the bytes. This is a really expensive operation
if (mt.TDSType != TdsEnums.SQLUDT)
// getting the actualSize is expensive, cache here and use below
actualSize = param.GetActualSize();
else
actualSize = 0; //get this later
byte precision = 0;
byte scale = 0;
// scale and precision are only relevant for numeric and decimal types
// adjust the actual value scale and precision to match the user specified
if (mt.SqlDbType == SqlDbType.Decimal) {
precision = param.GetActualPrecision();
scale = param.GetActualScale();
if (precision > TdsEnums.MAX_NUMERIC_PRECISION) {
throw SQL.PrecisionValueOutOfRange(precision);
}
// bug 49512, make sure the value matches the scale the user enters
if (!isNull) {
if (isSqlVal) {
value = AdjustSqlDecimalScale((SqlDecimal)value, scale);
// If Precision is specified, verify value precision vs param precision
if (precision != 0) {
if (precision < ((SqlDecimal)value).Precision) {
throw ADP.ParameterValueOutOfRange((SqlDecimal)value);
}
}
}
else {
value = AdjustDecimalScale((Decimal)value, scale);
SqlDecimal sqlValue = new SqlDecimal((Decimal)value);
// If Precision is specified, verify value precision vs param precision
if (precision != 0) {
if (precision < sqlValue.Precision) {
throw ADP.ParameterValueOutOfRange((Decimal)value);
}
}
}
}
}
bool isParameterEncrypted = 0 != (rpcext.paramoptions[i] & TdsEnums.RPC_PARAM_ENCRYPTED);
// Additional information we need to send over wire to the server when writing encrypted parameters.
SqlColumnEncryptionInputParameterInfo encryptedParameterInfoToWrite = null;
// If the parameter is encrypted, we need to encrypt the value.
if (isParameterEncrypted) {
Debug.Assert(mt.TDSType != TdsEnums.SQLVARIANT &&
mt.TDSType != TdsEnums.SQLUDT &&
mt.TDSType != TdsEnums.SQLXMLTYPE &&
mt.TDSType != TdsEnums.SQLIMAGE &&
mt.TDSType != TdsEnums.SQLTEXT &&
mt.TDSType != TdsEnums.SQLNTEXT, "Type unsupported for encryption");
byte[] serializedValue = null;
byte[] encryptedValue = null;
if (!isNull) {
try {
if (isSqlVal) {
serializedValue = SerializeUnencryptedSqlValue(value, mt, actualSize, param.Offset, param.NormalizationRuleVersion, stateObj);
}
else {
// for codePageEncoded types, WriteValue simply expects the number of characters
// For plp types, we also need the encoded byte size
serializedValue = SerializeUnencryptedValue(value, mt, param.GetActualScale(), actualSize, param.Offset, isDataFeed, param.NormalizationRuleVersion, stateObj);
}
Debug.Assert(serializedValue != null, "serializedValue should not be null in TdsExecuteRPC.");
encryptedValue = SqlSecurityUtility.EncryptWithKey(serializedValue, param.CipherMetadata, _connHandler.ConnectionOptions.DataSource);
}
catch (Exception e) {
throw SQL.ParamEncryptionFailed(param.ParameterName, null, e);
}
Debug.Assert(encryptedValue != null && encryptedValue.Length > 0,
"encryptedValue should not be null or empty in TdsExecuteRPC.");
}
else {
encryptedValue = null;
}
// Change the datatype to varbinary(max).
// Since we don't know the size of the encrypted parameter on the server side, always set to (max).
//
mt = MetaType.MetaMaxVarBinary;
size = -1;
actualSize = (encryptedValue == null) ? 0 : encryptedValue.Length;
encryptedParameterInfoToWrite = new SqlColumnEncryptionInputParameterInfo(param.GetMetadataForTypeInfo(),
param.CipherMetadata);
// Set the value to the encrypted value and mark isSqlVal as false for VARBINARY encrypted value.
value = encryptedValue;
isSqlVal = false;
}
Debug.Assert(isParameterEncrypted == (encryptedParameterInfoToWrite != null),
"encryptedParameterInfoToWrite can be not null if and only if isParameterEncrypted is true.");
Debug.Assert(!isSqlVal || !isParameterEncrypted, "isParameterEncrypted can be true only if isSqlVal is false.");
//
// fixup the types by using the NullableType property of the MetaType class
//
// following rules should be followed based on feedback from the M-SQL team
// 1) always use the BIG* types (ex: instead of SQLCHAR use SQLBIGCHAR)
// 2) always use nullable types (ex: instead of SQLINT use SQLINTN)
// 3) DECIMALN should always be sent as NUMERICN
//
stateObj.WriteByte(mt.NullableType);
// handle variants here: the SQLVariant writing routine will write the maxlen and actual len columns
if (mt.TDSType == TdsEnums.SQLVARIANT) {
// devnote: Do we ever hit this codepath? Yes, when a null value is being writen out via a sql variant
// param.GetActualSize is not used
WriteSqlVariantValue(isSqlVal ? MetaType.GetComValueFromSqlVariant(value) : value, param.GetActualSize(), param.Offset, stateObj);
continue;
}
int codePageByteSize = 0;
int maxsize = 0;
if (mt.IsAnsiType) {
// Avoid the following code block if ANSI but unfilled LazyMat blob
if ((!isNull) && (!isDataFeed)) {
string s;
if (isSqlVal) {
if (value is SqlString) {
s = ((SqlString)value).Value;
}
else {
Debug.Assert(value is SqlChars, "Unknown value for Ansi datatype");
s = new String(((SqlChars)value).Value);
}
}
else {
s = (string)value;
}
codePageByteSize = GetEncodingCharLength(s, actualSize, param.Offset, _defaultEncoding);
}
if (mt.IsPlp) {
WriteShort(TdsEnums.SQL_USHORTVARMAXLEN, stateObj);
}
else {
maxsize = (size > codePageByteSize) ? size : codePageByteSize;
if (maxsize == 0) {
// Yukon doesn't like 0 as MaxSize. Change it to 2 for unicode types (SQL9 - 682322)
if (mt.IsNCharType)
maxsize = 2;
else
maxsize = 1;
}
WriteParameterVarLen(mt, maxsize, false/*IsNull*/, stateObj);
}
}
else {
// If type timestamp - treat as fixed type and always send over timestamp length, which is 8.
// For fixed types, we either send null or fixed length for type length. We want to match that
// behavior for timestamps. However, in the case of null, we still must send 8 because if we
// send null we will not receive a output val. You can send null for fixed types and still
// receive a output value, but not for variable types. So, always send 8 for timestamp because
// while the user sees it as a fixed type, we are actually representing it as a bigbinary which
// is variable.
if (mt.SqlDbType == SqlDbType.Timestamp) {
WriteParameterVarLen(mt, TdsEnums.TEXT_TIME_STAMP_LEN, false, stateObj);
}
else if (mt.SqlDbType == SqlDbType.Udt) {
byte[] udtVal = null;
Microsoft.SqlServer.Server.Format format = Microsoft.SqlServer.Server.Format.Native;
Debug.Assert(_isYukon, "Invalid DataType UDT for non-Yukon or later server!");
if (!isNull) {
udtVal = _connHandler.Connection.GetBytes(value, out format, out maxsize);
Debug.Assert(null != udtVal, "GetBytes returned null instance. Make sure that it always returns non-null value");
size = udtVal.Length;
//it may be legitimate, but we dont support it yet
if (size < 0 || (size >= UInt16.MaxValue && maxsize != -1))
throw new IndexOutOfRangeException();
}
//if this is NULL value, write special null value
byte[] lenBytes = BitConverter.GetBytes((Int64)size);
if (ADP.IsEmpty(param.UdtTypeName))
throw SQL.MustSetUdtTypeNameForUdtParams();
// Split the input name. TypeName is returned as single 3 part name during DeriveParameters.
// NOTE: ParseUdtTypeName throws if format is incorrect
String[] names = SqlParameter.ParseTypeName(param.UdtTypeName, true /* is UdtTypeName */);
if (!ADP.IsEmpty(names[0]) && TdsEnums.MAX_SERVERNAME < names[0].Length) {
throw ADP.ArgumentOutOfRange("names");
}
if (!ADP.IsEmpty(names[1]) && TdsEnums.MAX_SERVERNAME < names[names.Length - 2].Length) {
throw ADP.ArgumentOutOfRange("names");
}
if (TdsEnums.MAX_SERVERNAME < names[2].Length) {
throw ADP.ArgumentOutOfRange("names");
}
WriteUDTMetaData(value, names[0], names[1], names[2], stateObj);
//
if (!isNull) {
WriteUnsignedLong((ulong)udtVal.Length, stateObj); // PLP length
if (udtVal.Length > 0) { // Only write chunk length if its value is greater than 0
WriteInt(udtVal.Length, stateObj); // Chunk length
stateObj.WriteByteArray(udtVal, udtVal.Length, 0); // Value
}
WriteInt(0, stateObj); // Terminator
}
else {
WriteUnsignedLong(TdsEnums.SQL_PLP_NULL, stateObj); // PLP Null.
}
continue; // End of UDT - continue to next parameter.
//
}
else if (mt.IsPlp) {
if (mt.SqlDbType != SqlDbType.Xml)
WriteShort(TdsEnums.SQL_USHORTVARMAXLEN, stateObj);
}
else if ((!mt.IsVarTime) && (mt.SqlDbType != SqlDbType.Date)) { // Time, Date, DateTime2, DateTimeoffset do not have the size written out
maxsize = (size > actualSize) ? size : actualSize;
if (maxsize == 0 && IsYukonOrNewer) {
// Yukon doesn't like 0 as MaxSize. Change it to 2 for unicode types (SQL9 - 682322)
if (mt.IsNCharType)
maxsize = 2;
else
maxsize = 1;
}
WriteParameterVarLen(mt, maxsize, false/*IsNull*/, stateObj);
}
}
// scale and precision are only relevant for numeric and decimal types
if (mt.SqlDbType == SqlDbType.Decimal) {
if (0 == precision) {
if (_isShiloh)
stateObj.WriteByte(TdsEnums.DEFAULT_NUMERIC_PRECISION);
else
stateObj.WriteByte(TdsEnums.SPHINX_DEFAULT_NUMERIC_PRECISION);
}
else
stateObj.WriteByte(precision);
stateObj.WriteByte(scale);
}
else if (mt.IsVarTime) {
stateObj.WriteByte(param.GetActualScale());
}
// write out collation or xml metadata
if (_isYukon && (mt.SqlDbType == SqlDbType.Xml)) {
if (((param.XmlSchemaCollectionDatabase != null) && (param.XmlSchemaCollectionDatabase != ADP.StrEmpty)) ||
((param.XmlSchemaCollectionOwningSchema != null) && (param.XmlSchemaCollectionOwningSchema != ADP.StrEmpty)) ||
((param.XmlSchemaCollectionName != null) && (param.XmlSchemaCollectionName != ADP.StrEmpty))) {
stateObj.WriteByte(1); //Schema present flag
if ((param.XmlSchemaCollectionDatabase != null) && (param.XmlSchemaCollectionDatabase != ADP.StrEmpty)) {
tempLen = (param.XmlSchemaCollectionDatabase).Length;
stateObj.WriteByte((byte)(tempLen));
WriteString(param.XmlSchemaCollectionDatabase, tempLen, 0, stateObj);
}
else {
stateObj.WriteByte(0); // No dbname
}
if ((param.XmlSchemaCollectionOwningSchema != null) && (param.XmlSchemaCollectionOwningSchema != ADP.StrEmpty)) {
tempLen = (param.XmlSchemaCollectionOwningSchema).Length;
stateObj.WriteByte((byte)(tempLen));
WriteString(param.XmlSchemaCollectionOwningSchema, tempLen, 0, stateObj);
}
else {
stateObj.WriteByte(0); // no xml schema name
}
if ((param.XmlSchemaCollectionName != null) && (param.XmlSchemaCollectionName != ADP.StrEmpty)) {
tempLen = (param.XmlSchemaCollectionName).Length;
WriteShort((short)(tempLen), stateObj);
WriteString(param.XmlSchemaCollectionName, tempLen, 0, stateObj);
}
else {
WriteShort(0, stateObj); // No xml schema collection name
}
}
else {
stateObj.WriteByte(0); // No schema
}
}
else if (_isShiloh && mt.IsCharType) {
// if it is not supplied, simply write out our default collation, otherwise, write out the one attached to the parameter
SqlCollation outCollation = (param.Collation != null) ? param.Collation : _defaultCollation;
Debug.Assert(_defaultCollation != null, "_defaultCollation is null!");
WriteUnsignedInt(outCollation.info, stateObj);
stateObj.WriteByte(outCollation.sortId);
}
if (0 == codePageByteSize)
WriteParameterVarLen(mt, actualSize, isNull, stateObj, isDataFeed);
else
WriteParameterVarLen(mt, codePageByteSize, isNull, stateObj, isDataFeed);
Task writeParamTask = null;
// write the value now
if (!isNull) {
if (isSqlVal) {
writeParamTask = WriteSqlValue(value, mt, actualSize, codePageByteSize, param.Offset, stateObj);
}
else {
// for codePageEncoded types, WriteValue simply expects the number of characters
// For plp types, we also need the encoded byte size
writeParamTask = WriteValue(value, mt, isParameterEncrypted ? (byte)0 : param.GetActualScale(), actualSize, codePageByteSize, isParameterEncrypted ? 0 : param.Offset, stateObj, isParameterEncrypted ? 0 : param.Size, isDataFeed);
}
}
// Send encryption metadata for encrypted parameters.
if (isParameterEncrypted) {
writeParamTask = WriteEncryptionMetadata(writeParamTask, encryptedParameterInfoToWrite, stateObj);
}
if (!sync) {
if (writeParamTask == null) {
writeParamTask = stateObj.WaitForAccumulatedWrites();
}
if (writeParamTask != null) {
Task task = null;
if (completion == null) {
completion = new TaskCompletionSource<object>();
task = completion.Task;
}
AsyncHelper.ContinueTask(writeParamTask, completion,
() => TdsExecuteRPC(cmd, rpcArray, timeout, inSchema, notificationRequest, stateObj, isCommandProc, sync, completion,
startRpc: ii, startParam: i + 1),
connectionToDoom: _connHandler,
onFailure: exc => TdsExecuteRPC_OnFailure(exc, stateObj));
// Take care of releasing the locks
if (releaseConnectionLock) {
task.ContinueWith(_ => {
_connHandler._parserLock.Release();
}, TaskScheduler.Default);
releaseConnectionLock = false;
}
return task;
}
}
#if DEBUG
else {
Debug.Assert(writeParamTask == null, "Should not have a task when executing sync");
}
#endif
} // parameter for loop
// If this is not the last RPC we are sending, add the batch flag
if (ii < (rpcArray.Length - 1)) {
if (_isYukon) {
stateObj.WriteByte(TdsEnums.YUKON_RPCBATCHFLAG);
}
else {
stateObj.WriteByte(TdsEnums.SHILOH_RPCBATCHFLAG);
}
}
} // rpc for loop
Task execFlushTask = stateObj.ExecuteFlush();
Debug.Assert(!sync || execFlushTask == null, "Should not get a task when executing sync");
if (execFlushTask != null) {
Task task = null;
if (completion == null) {
completion = new TaskCompletionSource<object>();
task = completion.Task;
}
bool taskReleaseConnectionLock = releaseConnectionLock;
execFlushTask.ContinueWith(tsk => ExecuteFlushTaskCallback(tsk, stateObj, completion, taskReleaseConnectionLock), TaskScheduler.Default);
// ExecuteFlushTaskCallback will take care of the locks for us
releaseConnectionLock = false;
return task;
}
}
catch (Exception e) {
//
if (!ADP.IsCatchableExceptionType(e)) {
throw;
}
FailureCleanup(stateObj, e);
throw;
}
FinalizeExecuteRPC(stateObj);
if (completion != null) {
completion.SetResult(null);
}
return null;
}
catch (Exception e) {
FinalizeExecuteRPC(stateObj);
if (completion != null) {
completion.SetException(e);
return null;
}
else {
throw e;
}
}
finally {
Debug.Assert(firstCall || !releaseConnectionLock, "Shouldn't be releasing locks synchronously after the first call");
if (releaseConnectionLock) {
_connHandler._parserLock.Release();
}
}
}