in prediction_generation/summarize.py [0:0]
def main():
args = parse_args()
dataset = load_json(args.dataset_file)
annotations = load_annotations(args.annotation_file, dataset["name"])
out = {
"dataset": dataset["name"],
"dataset_nobs": dataset["n_obs"],
"dataset_ndim": dataset["n_dim"],
"annotations": annotations,
"results": {},
}
data_results = next(
(d for d in os.listdir(args.result_dir) if d == dataset["name"]), None
)
if data_results is None:
print(
"Couldn't find the result directory for dataset %s"
% dataset["name"],
file=sys.stderr,
)
raise SystemExit(1)
dataset_dir = os.path.join(args.result_dir, data_results)
for method in sorted(os.listdir(dataset_dir)):
method_dir = os.path.join(dataset_dir, method)
for result_file in sorted(os.listdir(method_dir)):
fname = os.path.join(method_dir, result_file)
result = load_json(fname)
if not method in out["results"]:
out["results"][method] = []
if result["status"].lower() == "success":
locations = clean_cps(result["result"]["cplocations"], dataset)
f1, precision, recall = f_measure(
annotations, locations, return_PR=True
)
n_obs = dataset["n_obs"]
cover = covering(annotations, locations, n_obs)
scores = {
"f1": f1,
"precision": precision,
"recall": recall,
"cover": cover,
}
else:
locations = None
scores = None
out["results"][method].append(
{
"parameters": result["parameters"],
"task_file": result_file,
"cplocations": locations,
"scores": scores,
"status": result['status'],
"args": result['args']
}
)
if args.output_file:
with open(args.output_file, "w") as fp:
json.dump(out, fp, indent="\t")
else:
print(json.dumps(out, indent="\t"))