data_extraction_transformation/scripts/extract-alerts.py (211 lines of code) (raw):
import requests
from datetime import datetime, timedelta
import pandas as pd
import json
from helper import append_strings, get_json, txt_to_list
import argparse
'''
This function is used in the get_alert_summary_info function. Provided the JSON of alerts related to a specific alert, it gets their ID and make them into a pipe '|' separated string
'''
def extract_alert_ids(alerts):
alert_ids = ""
if (len(alerts) > 0):
alert_ids = "|"
for i in alerts:
alert_ids = alert_ids + str(i['id']) + '|'
return alert_ids
'''
This function is used for extracting timestamps with an exception handling as some entries have the %Y-%m-%dT%H:%M:%S.%f timestamp format and others (entries from 2019 and prior) have %Y-%m-%dT%H:%M:%Stimestamp format
'''
def parse_timestamp(timestamp_str):
formats_to_try = ["%Y-%m-%dT%H:%M:%S.%f", "%Y-%m-%dT%H:%M:%S"]
for fmt in formats_to_try:
try:
return datetime.strptime(timestamp_str, fmt)
except ValueError:
pass
'''
This function takes a JSON of a specific test measurment associated with a performance-related alert and extracts its attributes
'''
def get_alert_info(json_test):
test_characteristics = {'single_alert_id': json_test['id'],
'single_alert_status': json_test['status'],
'single_alert_profile_url': json_test['profile_url'],
'single_alert_prev_profile_url': json_test['prev_profile_url'],
'single_alert_is_regression': json_test['is_regression'],
'single_alert_prev_value': json_test['prev_value'],
'single_alert_new_value': json_test['new_value'],
'single_alert_t_value': json_test['t_value'],
'single_alert_amount_abs': json_test['amount_abs'],
'single_alert_amount_pct': json_test['amount_pct'],
'single_alert_summary_id': json_test['summary_id'],
'single_alert_related_summary_id': json_test['related_summary_id'],
'single_alert_manually_created': json_test['manually_created'],
'single_alert_classifier': json_test['classifier'],
'single_alert_starred': json_test['starred'],
'single_alert_classifier_email': json_test['classifier_email'],
'single_alert_noise_profile': json_test['noise_profile']
}
if (json_test['series_signature'] != None):
test_characteristics['signature_id'] = json_test['series_signature']['id']
test_characteristics['single_alert_series_signature_framework_id'] = json_test['series_signature']['framework_id']
test_characteristics['single_alert_series_signature_signature_hash'] = json_test['series_signature']['signature_hash']
test_characteristics['single_alert_series_signature_machine_platform'] = json_test['series_signature']['machine_platform']
test_characteristics['single_alert_series_signature_suite'] = json_test['series_signature']['suite']
test_characteristics['single_alert_series_signature_test'] = json_test['series_signature']['test']
test_characteristics['single_alert_series_signature_lower_is_better'] = json_test['series_signature']['lower_is_better']
test_characteristics['single_alert_series_signature_has_subtests'] = json_test['series_signature']['has_subtests']
test_characteristics['single_alert_series_signature_option_collection_hash'] = json_test['series_signature']['option_collection_hash']
test_characteristics['single_alert_series_signature_tags'] = append_strings(json_test['series_signature']['tags'])
test_characteristics['single_alert_series_signature_extra_options'] = append_strings(json_test['series_signature']['extra_options'])
test_characteristics['single_alert_series_signature_measurement_unit'] = json_test['series_signature']['measurement_unit']
test_characteristics['single_alert_series_signature_suite_public_name'] = json_test['series_signature']['suite_public_name']
test_characteristics['single_alert_series_signature_test_public_name'] = json_test['series_signature']['test_public_name']
if (json_test['prev_taskcluster_metadata'] != None and len(json_test['prev_taskcluster_metadata']) > 0):
test_characteristics['single_alert_prev_taskcluster_metadata_task_id'] = json_test['prev_taskcluster_metadata']['task_id']
test_characteristics['single_alert_prev_taskcluster_metadata_retry_id'] = json_test['prev_taskcluster_metadata']['retry_id']
if (json_test['taskcluster_metadata'] != None and len(json_test['taskcluster_metadata']) > 0):
test_characteristics['single_alert_taskcluster_metadata_task_id'] = json_test['taskcluster_metadata']['task_id']
test_characteristics['single_alert_taskcluster_metadata_retry_id'] = json_test['taskcluster_metadata']['retry_id']
if (json_test['backfill_record'] != None):
test_characteristics['single_alert_backfill_record_context'] = json_test['backfill_record']['context'],
test_characteristics['single_alert_backfill_record_status'] = json_test['backfill_record']['status'],
test_characteristics['single_alert_backfill_record_total_actions_triggered'] = json_test['backfill_record']['total_actions_triggered'],
test_characteristics['single_alert_backfill_record_total_backfills_failed'] = json_test['backfill_record']['total_backfills_failed'],
test_characteristics['single_alert_backfill_record_total_backfills_successful'] = json_test['backfill_record']['total_backfills_successful'],
test_characteristics['single_alert_backfill_record_total_backfills_in_progress'] = json_test['backfill_record']['total_backfills_in_progress'],
return test_characteristics
'''
This function takes a JSON of a specific performance-related alert and extracts its attributes
'''
def get_alert_summary_info(json_alert):
alert_characteristics = {'alert_summary_id': json_alert['id'],
'alert_summary_push_id': json_alert['push_id'],
'alert_summary_prev_push_id': json_alert['prev_push_id'],
'alert_summary_creation_timestamp': json_alert['created'],
'alert_summary_first_triaged': json_alert['first_triaged'],
'alert_summary_repository': json_alert['repository'],
'alert_summary_framework': json_alert['framework'],
'alert_summary_triage_due_date': json_alert['triage_due_date'],
'alert_summary_related_alerts': extract_alert_ids(json_alert['related_alerts']),
'alert_summary_status': json_alert['status'],
'alert_summary_bug_number': json_alert['bug_number'],
'alert_summary_bug_due_date': json_alert['bug_due_date'],
'alert_summary_bug_updated': json_alert['bug_updated'],
'alert_summary_issue_tracker': json_alert['issue_tracker'],
'alert_summary_notes': json_alert['notes'],
'alert_summary_revision': json_alert['revision'],
'push_timestamp': json_alert['push_timestamp'],
'alert_prev_push_revision': json_alert['prev_push_revision'],
'alert_summary_assignee_username': json_alert['assignee_username'],
'alert_summary_assignee_email': json_alert['assignee_email'],
'alert_summary_performance_tags': append_strings(json_alert['performance_tags'])
}
return alert_characteristics
def parse_args():
parser = argparse.ArgumentParser(description="Fetch alerts details from an API and save to a CSV file.")
parser.add_argument('-a', '--alerts-file', help="Path to the output CSV alerts file.")
return parser.parse_args()
def main():
args = parse_args()
#alerts_output = '../datasets/alerts_data.csv'
alerts_output = args.alerts_file
current_timestamp = datetime.now()
comp_time_stamp = current_timestamp
'''
This script extracts the perofrmance-related alerts from the time of running the script down until around 365 days ago
'''
threshold_timestamp = current_timestamp - timedelta(days=365)
'''
The following list contains the columns names of the CSV to be generated through this script
'''
columns = ['alert_summary_id',
'alert_summary_push_id',
'alert_summary_prev_push_id',
'alert_summary_creation_timestamp',
'alert_summary_first_triaged',
'alert_summary_triage_due_date',
'alert_summary_repository',
'alert_summary_framework',
'single_alert_id',
'single_alert_status',
'signature_id',
'single_alert_series_signature_framework_id',
'single_alert_series_signature_signature_hash',
'single_alert_series_signature_machine_platform',
'single_alert_series_signature_test',
'single_alert_series_signature_suite',
'single_alert_series_signature_lower_is_better',
'single_alert_series_signature_has_subtests',
'single_alert_series_signature_option_collection_hash',
'single_alert_series_signature_tags',
'single_alert_series_signature_extra_options',
'single_alert_series_signature_measurement_unit',
'single_alert_series_signature_suite_public_name',
'single_alert_series_signature_test_public_name',
'single_alert_prev_taskcluster_metadata_task_id',
'single_alert_prev_taskcluster_metadata_retry_id',
'single_alert_taskcluster_metadata_task_id',
'single_alert_taskcluster_metadata_retry_id',
'single_alert_profile_url',
'single_alert_prev_profile_url',
'single_alert_is_regression',
'single_alert_prev_value',
'single_alert_new_value',
'single_alert_t_value',
'single_alert_amount_abs',
'single_alert_amount_pct',
'single_alert_summary_id',
'single_alert_related_summary_id',
'single_alert_manually_created',
'single_alert_classifier',
'single_alert_starred',
'single_alert_classifier_email',
'single_alert_backfill_record_context',
'single_alert_backfill_record_status',
'single_alert_backfill_record_total_actions_triggered',
'single_alert_backfill_record_total_backfills_failed',
'single_alert_backfill_record_total_backfills_successful',
'single_alert_backfill_record_total_backfills_in_progress',
'single_alert_noise_profile',
'alert_summary_related_alerts',
'alert_summary_status',
'alert_summary_bug_number',
'alert_summary_bug_due_date',
'alert_summary_bug_updated',
'alert_summary_issue_tracker',
'alert_summary_notes',
'alert_summary_revision',
'push_timestamp',
'alert_prev_push_revision',
'alert_summary_assignee_username',
'alert_summary_assignee_email',
'alert_summary_performance_tags'
]
unique_signatures = set()
df = pd.DataFrame(columns=columns)
url = "https://treeherder.mozilla.org/api/performance/alertsummary/"
while ((comp_time_stamp >= threshold_timestamp) and (url != None)):
payload = get_json(url)
'''
the API works in a pagination style, so each API response contains, along with a handful of data entries, the URL for the API endpoint containing the next data entries and so on and so fourth
'''
url = payload['next']
'''
earliest_date will be used to determine when to stop the alerts data extraction
'''
earliest_date = payload['results'][-1]['created']
comp_time_stamp = parse_timestamp(earliest_date)
'''the following loop will extract the alerts data obtained from one given API call
'''
for i in payload['results']:
alert_info = get_alert_summary_info(i)
for j in i['alerts']:
test_info = get_alert_info(j)
new_row = {}
new_row.update(alert_info)
new_row.update(test_info)
unique_signatures.add(new_row['signature_id'])
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df.to_csv(alerts_output, index=False)
# sig_ids_str = ", ".join(list(list(map(lambda id: str(id), unique_signatures))))
# '''
# The signatures.txt file contains the signature IDs associated with performance alerts extracted through this script. This file will be used in the extract-timeseries.py file
# '''
# with open("signatures.txt", "w") as file:
# file.write(sig_ids_str)
if __name__ == "__main__":
main()