prediction_generation/old-code/cpdbench_ecp.py (35 lines of code) (raw):
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Author: Mohamed Bilel Besbes
Date: 2024-10-13
"""
import argparse
import time
import ruptures as rpt
import copy
import numpy as np
from cpdbench_utils import load_dataset, exit_success, exit_with_error
def parse_args():
parser = argparse.ArgumentParser(description="Run KCPA algorithm on a time series dataset.")
parser.add_argument('-i', '--input', required=True, help="Path to the input JSON dataset file.")
parser.add_argument('-o', '--output', help="Path to the output JSON file.")
parser.add_argument('--alpha', type=float, help="Alpha parameter for e.divisive.", default=1.0)
parser.add_argument('--minsize', type=int, help="Minimum segment size.", default=2)
parser.add_argument('-R', '--runs', type=int, help="Number of runs for the algorithm.", default=20)
parser.add_argument('--siglvl', type=float, help="Significance level for e.divisive.", default=0.05)
return parser.parse_args()
def e_divisive(data, alpha, minsize, siglvl, runs):
algo = rpt.Edivisive(alpha=alpha, min_size=minsize, significance_level=siglvl).fit(data)
return algo.predict(n_bkps=runs)
def main():
args = parse_args()
data, mat = load_dataset(args.input)
start_time = time.time()
raw_args = copy.deepcopy(args)
try:
series = data['series'][0]['raw']
transformed_data = np.array(series).reshape(-1, 1)
result = e_divisive(transformed_data, alpha=args.alpha, runs=args.runs, minsize=args.minsize, siglvl=args.siglvl)
locations = list(map(int, result))
stop_time = time.time()
runtime = stop_time - start_time
exit_success(data, raw_args, vars(args), locations, runtime, __file__)
except Exception as e:
exit_with_error(data, raw_args, vars(args), str(e), __file__)
if __name__ == "__main__":
main()