prediction_generation/old-code/cpdbench_ecp.py (35 lines of code) (raw):

#!/usr/bin/env python # -*- coding: utf-8 -*- """ Author: Mohamed Bilel Besbes Date: 2024-10-13 """ import argparse import time import ruptures as rpt import copy import numpy as np from cpdbench_utils import load_dataset, exit_success, exit_with_error def parse_args(): parser = argparse.ArgumentParser(description="Run KCPA algorithm on a time series dataset.") parser.add_argument('-i', '--input', required=True, help="Path to the input JSON dataset file.") parser.add_argument('-o', '--output', help="Path to the output JSON file.") parser.add_argument('--alpha', type=float, help="Alpha parameter for e.divisive.", default=1.0) parser.add_argument('--minsize', type=int, help="Minimum segment size.", default=2) parser.add_argument('-R', '--runs', type=int, help="Number of runs for the algorithm.", default=20) parser.add_argument('--siglvl', type=float, help="Significance level for e.divisive.", default=0.05) return parser.parse_args() def e_divisive(data, alpha, minsize, siglvl, runs): algo = rpt.Edivisive(alpha=alpha, min_size=minsize, significance_level=siglvl).fit(data) return algo.predict(n_bkps=runs) def main(): args = parse_args() data, mat = load_dataset(args.input) start_time = time.time() raw_args = copy.deepcopy(args) try: series = data['series'][0]['raw'] transformed_data = np.array(series).reshape(-1, 1) result = e_divisive(transformed_data, alpha=args.alpha, runs=args.runs, minsize=args.minsize, siglvl=args.siglvl) locations = list(map(int, result)) stop_time = time.time() runtime = stop_time - start_time exit_success(data, raw_args, vars(args), locations, runtime, __file__) except Exception as e: exit_with_error(data, raw_args, vars(args), str(e), __file__) if __name__ == "__main__": main()