scripts/bug_classifier.py (59 lines of code) (raw):

# -*- coding: utf-8 -*- import argparse import os from logging import INFO, basicConfig, getLogger import numpy as np import requests from bugbug import bugzilla, db from bugbug.models import get_model_class from bugbug.utils import download_model basicConfig(level=INFO) logger = getLogger(__name__) def classify_bugs(model_name: str, bug_id: int) -> None: model_file_name = f"{model_name}model" if not os.path.exists(model_file_name): logger.info("%s does not exist. Downloading the model....", model_file_name) try: download_model(model_name) except requests.HTTPError: logger.error( "A pre-trained model is not available, you will need to train it yourself using the trainer script" ) raise SystemExit(1) model_class = get_model_class(model_name) model = model_class.load(model_file_name) if bug_id: bugs = bugzilla.get(bug_id).values() assert bugs, f"A bug with a bug id of {bug_id} was not found" else: assert db.download(bugzilla.BUGS_DB) bugs = bugzilla.get_bugs() for bug in bugs: print( f"https://bugzilla.mozilla.org/show_bug.cgi?id={bug['id']} - {bug['summary']} " ) if model.calculate_importance: probas, importance = model.classify( bug, probabilities=True, importances=True ) model.print_feature_importances( importance["importances"], class_probabilities=probas ) else: probas = model.classify(bug, probabilities=True, importances=False) probability = probas[0] pred_index = np.argmax(probability) if len(probability) > 2: pred_class = model.le.inverse_transform([pred_index])[0] else: pred_class = "Positive" if pred_index == 1 else "Negative" print(f"{pred_class} {probability}") input() def main() -> None: description = "Perform evaluation on bugs using the specified model" parser = argparse.ArgumentParser(description=description) parser.add_argument("model", help="Which model to use for evaluation") parser.add_argument("--bug-id", help="Classify the given bug id", type=int) args = parser.parse_args() classify_bugs(args.model, args.bug_id) if __name__ == "__main__": main()