scripts/compatibility_report_classifier.py (50 lines of code) (raw):

# -*- coding: utf-8 -*- import argparse import os from logging import INFO, basicConfig, getLogger import numpy as np import requests from bugbug.models import get_model_class from bugbug.utils import download_model basicConfig(level=INFO) logger = getLogger(__name__) def classify_reports(model_name: str, report_text: str) -> None: model_file_name = f"{model_name}model" if not os.path.exists(model_file_name): logger.info("%s does not exist. Downloading the model....", model_file_name) try: download_model(model_name) except requests.HTTPError: logger.error( "A pre-trained model is not available, you will need to train it yourself using the trainer script" ) raise SystemExit(1) model_class = get_model_class(model_name) model = model_class.load(model_file_name) logger.info("%s", report_text) report = {"body": report_text, "title": ""} if model.calculate_importance: probas, importance = model.classify( report, probabilities=True, importances=True ) model.print_feature_importances( importance["importances"], class_probabilities=probas ) else: probas = model.classify(report, probabilities=True, importances=False) probability = probas[0] pred_index = np.argmax(probability) if len(probability) > 2: pred_class = model.le.inverse_transform([pred_index])[0] else: pred_class = "Positive" if pred_index == 1 else "Negative" logger.info("%s %s", pred_class, probability) input() def main() -> None: description = "Perform evaluation of user report using the specified model" parser = argparse.ArgumentParser(description=description) parser.add_argument("model", type=str, help="Which model to use for evaluation") parser.add_argument("--report-text", help="Report text to classify", type=str) args = parser.parse_args() classify_reports(args.model, args.report_text) if __name__ == "__main__": main()