scripts/compatibility_report_classifier.py (50 lines of code) (raw):
# -*- coding: utf-8 -*-
import argparse
import os
from logging import INFO, basicConfig, getLogger
import numpy as np
import requests
from bugbug.models import get_model_class
from bugbug.utils import download_model
basicConfig(level=INFO)
logger = getLogger(__name__)
def classify_reports(model_name: str, report_text: str) -> None:
model_file_name = f"{model_name}model"
if not os.path.exists(model_file_name):
logger.info("%s does not exist. Downloading the model....", model_file_name)
try:
download_model(model_name)
except requests.HTTPError:
logger.error(
"A pre-trained model is not available, you will need to train it yourself using the trainer script"
)
raise SystemExit(1)
model_class = get_model_class(model_name)
model = model_class.load(model_file_name)
logger.info("%s", report_text)
report = {"body": report_text, "title": ""}
if model.calculate_importance:
probas, importance = model.classify(
report, probabilities=True, importances=True
)
model.print_feature_importances(
importance["importances"], class_probabilities=probas
)
else:
probas = model.classify(report, probabilities=True, importances=False)
probability = probas[0]
pred_index = np.argmax(probability)
if len(probability) > 2:
pred_class = model.le.inverse_transform([pred_index])[0]
else:
pred_class = "Positive" if pred_index == 1 else "Negative"
logger.info("%s %s", pred_class, probability)
input()
def main() -> None:
description = "Perform evaluation of user report using the specified model"
parser = argparse.ArgumentParser(description=description)
parser.add_argument("model", type=str, help="Which model to use for evaluation")
parser.add_argument("--report-text", help="Report text to classify", type=str)
args = parser.parse_args()
classify_reports(args.model, args.report_text)
if __name__ == "__main__":
main()