in lib/report.py [0:0]
def createMeanComparison(self, segment, metric, metric_type):
t = get_template("mean.html")
datasets = []
control=self.data["branches"][0]
for branch in self.data["branches"]:
n = int(self.data[branch][segment][metric_type][metric]["n"])
n = f'{n:,}'
mean = "{0:.1f}".format(self.data[branch][segment][metric_type][metric]["mean"])
if branch != control:
branch_mean = self.data[branch][segment][metric_type][metric]["mean"]
control_mean = self.data[control][segment][metric_type][metric]["mean"]
uplift = (branch_mean-control_mean)/control_mean*100.0
uplift = "{0:.1f}".format(uplift)
else:
uplift = ""
se = "{0:.1f}".format(self.data[branch][segment][metric_type][metric]["se"])
std = "{0:.1f}".format(self.data[branch][segment][metric_type][metric]["std"])
dataset = {
"branch": branch,
"mean": mean,
"uplift": uplift,
"n": n,
"se": se,
"std": std,
"control": branch==control
}
if branch != control:
for test in self.data[branch][segment][metric_type][metric]["tests"]:
effect = "{0:.2f}".format(self.data[branch][segment][metric_type][metric]["tests"][test]["effect"])
pval = "{0:.2g}".format(self.data[branch][segment][metric_type][metric]["tests"][test]["p-value"])
dataset[test] = {
"effect": effect,
"pval": pval
}
datasets.append(dataset)
context = {
"segment": segment,
"metric": metric,
"branches": self.data["branches"],
"datasets": datasets
}
self.doc(t.render(context))