void RegexMatcher::MatchChunkAt()

in intl/icu/source/i18n/rematch.cpp [4294:5720]


void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
    UBool       isMatch  = false;      // True if the we have a match.

    int32_t     backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards

    int32_t     op;                    // Operation from the compiled pattern, split into
    int32_t     opType;                //    the opcode
    int32_t     opValue;               //    and the operand value.

#ifdef REGEX_RUN_DEBUG
    if (fTraceDebug) {
        printf("MatchAt(startIdx=%d)\n", startIdx);
        printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
        printf("Input String:     \"%s\"\n\n", CStr(StringFromUText(fInputText))());
    }
#endif

    if (U_FAILURE(status)) {
        return;
    }

    //  Cache frequently referenced items from the compiled pattern
    //
    int64_t             *pat           = fPattern->fCompiledPat->getBuffer();

    const char16_t      *litText       = fPattern->fLiteralText.getBuffer();
    UVector             *fSets         = fPattern->fSets;

    const char16_t      *inputBuf      = fInputText->chunkContents;

    fFrameSize = fPattern->fFrameSize;
    REStackFrame        *fp            = resetStack();
    if (U_FAILURE(fDeferredStatus)) {
        status = fDeferredStatus;
        return;
    }

    fp->fPatIdx   = 0;
    fp->fInputIdx = startIdx;

    // Zero out the pattern's static data
    int32_t i;
    for (i = 0; i<fPattern->fDataSize; i++) {
        fData[i] = 0;
    }

    //
    //  Main loop for interpreting the compiled pattern.
    //  One iteration of the loop per pattern operation performed.
    //
    for (;;) {
        op = static_cast<int32_t>(pat[fp->fPatIdx]);
        opType  = URX_TYPE(op);
        opValue = URX_VAL(op);
#ifdef REGEX_RUN_DEBUG
        if (fTraceDebug) {
            UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
            printf("inputIdx=%ld   inputChar=%x   sp=%3ld   activeLimit=%ld  ", fp->fInputIdx,
                   UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
            fPattern->dumpOp(fp->fPatIdx);
        }
#endif
        fp->fPatIdx++;

        switch (opType) {


        case URX_NOP:
            break;


        case URX_BACKTRACK:
            // Force a backtrack.  In some circumstances, the pattern compiler
            //   will notice that the pattern can't possibly match anything, and will
            //   emit one of these at that point.
            fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            break;


        case URX_ONECHAR:
            if (fp->fInputIdx < fActiveLimit) {
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c == opValue) {
                    break;
                }
            } else {
                fHitEnd = true;
            }
            fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            break;


        case URX_STRING:
            {
                // Test input against a literal string.
                // Strings require two slots in the compiled pattern, one for the
                //   offset to the string text, and one for the length.
                int32_t   stringStartIdx = opValue;
                int32_t   stringLen;

                op = static_cast<int32_t>(pat[fp->fPatIdx]); // Fetch the second operand
                fp->fPatIdx++;
                opType    = URX_TYPE(op);
                stringLen = URX_VAL(op);
                U_ASSERT(opType == URX_STRING_LEN);
                U_ASSERT(stringLen >= 2);

                const char16_t * pInp = inputBuf + fp->fInputIdx;
                const char16_t * pInpLimit = inputBuf + fActiveLimit;
                const char16_t * pPat = litText+stringStartIdx;
                const char16_t * pEnd = pInp + stringLen;
                UBool success = true;
                while (pInp < pEnd) {
                    if (pInp >= pInpLimit) {
                        fHitEnd = true;
                        success = false;
                        break;
                    }
                    if (*pInp++ != *pPat++) {
                        success = false;
                        break;
                    }
                }

                if (success) {
                    fp->fInputIdx += stringLen;
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_STATE_SAVE:
            fp = StateSave(fp, opValue, status);
            break;


        case URX_END:
            // The match loop will exit via this path on a successful match,
            //   when we reach the end of the pattern.
            if (toEnd && fp->fInputIdx != fActiveLimit) {
                // The pattern matched, but not to the end of input.  Try some more.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                break;
            }
            isMatch = true;
            goto  breakFromLoop;

            // Start and End Capture stack frame variables are laid out out like this:
            //  fp->fExtra[opValue]  - The start of a completed capture group
            //             opValue+1 - The end   of a completed capture group
            //             opValue+2 - the start of a capture group whose end
            //                          has not yet been reached (and might not ever be).
        case URX_START_CAPTURE:
            U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
            fp->fExtra[opValue+2] = fp->fInputIdx;
            break;


        case URX_END_CAPTURE:
            U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
            U_ASSERT(fp->fExtra[opValue+2] >= 0);            // Start pos for this group must be set.
            fp->fExtra[opValue]   = fp->fExtra[opValue+2];   // Tentative start becomes real.
            fp->fExtra[opValue+1] = fp->fInputIdx;           // End position
            U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
            break;


        case URX_DOLLAR:                   //  $, test for End of line
            //     or for position before new line at end of input
            if (fp->fInputIdx < fAnchorLimit-2) {
                // We are no where near the end of input.  Fail.
                //   This is the common case.  Keep it first.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                break;
            }
            if (fp->fInputIdx >= fAnchorLimit) {
                // We really are at the end of input.  Success.
                fHitEnd = true;
                fRequireEnd = true;
                break;
            }

            // If we are positioned just before a new-line that is located at the
            //   end of input, succeed.
            if (fp->fInputIdx == fAnchorLimit-1) {
                UChar32 c;
                U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);

                if (isLineTerminator(c)) {
                    if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
                        // At new-line at end of input. Success
                        fHitEnd = true;
                        fRequireEnd = true;
                        break;
                    }
                }
            } else if (fp->fInputIdx == fAnchorLimit-2 &&
                inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
                    fHitEnd = true;
                    fRequireEnd = true;
                    break;                         // At CR/LF at end of input.  Success
            }

            fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));

            break;


        case URX_DOLLAR_D:                   //  $, test for End of Line, in UNIX_LINES mode.
            if (fp->fInputIdx >= fAnchorLimit-1) {
                // Either at the last character of input, or off the end.
                if (fp->fInputIdx == fAnchorLimit-1) {
                    // At last char of input.  Success if it's a new line.
                    if (inputBuf[fp->fInputIdx] == 0x0a) {
                        fHitEnd = true;
                        fRequireEnd = true;
                        break;
                    }
                } else {
                    // Off the end of input.  Success.
                    fHitEnd = true;
                    fRequireEnd = true;
                    break;
                }
            }

            // Not at end of input.  Back-track out.
            fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            break;


        case URX_DOLLAR_M:                //  $, test for End of line in multi-line mode
            {
                if (fp->fInputIdx >= fAnchorLimit) {
                    // We really are at the end of input.  Success.
                    fHitEnd = true;
                    fRequireEnd = true;
                    break;
                }
                // If we are positioned just before a new-line, succeed.
                // It makes no difference where the new-line is within the input.
                UChar32 c = inputBuf[fp->fInputIdx];
                if (isLineTerminator(c)) {
                    // At a line end, except for the odd chance of  being in the middle of a CR/LF sequence
                    //  In multi-line mode, hitting a new-line just before the end of input does not
                    //   set the hitEnd or requireEnd flags
                    if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
                        break;
                    }
                }
                // not at a new line.  Fail.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_DOLLAR_MD:                //  $, test for End of line in multi-line and UNIX_LINES mode
            {
                if (fp->fInputIdx >= fAnchorLimit) {
                    // We really are at the end of input.  Success.
                    fHitEnd = true;
                    fRequireEnd = true;  // Java set requireEnd in this case, even though
                    break;               //   adding a new-line would not lose the match.
                }
                // If we are not positioned just before a new-line, the test fails; backtrack out.
                // It makes no difference where the new-line is within the input.
                if (inputBuf[fp->fInputIdx] != 0x0a) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_CARET:                    //  ^, test for start of line
            if (fp->fInputIdx != fAnchorStart) {
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_CARET_M:                   //  ^, test for start of line in mulit-line mode
            {
                if (fp->fInputIdx == fAnchorStart) {
                    // We are at the start input.  Success.
                    break;
                }
                // Check whether character just before the current pos is a new-line
                //   unless we are at the end of input
                char16_t  c = inputBuf[fp->fInputIdx - 1];
                if ((fp->fInputIdx < fAnchorLimit) &&
                    isLineTerminator(c)) {
                    //  It's a new-line.  ^ is true.  Success.
                    //  TODO:  what should be done with positions between a CR and LF?
                    break;
                }
                // Not at the start of a line.  Fail.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_CARET_M_UNIX:       //  ^, test for start of line in mulit-line + Unix-line mode
            {
                U_ASSERT(fp->fInputIdx >= fAnchorStart);
                if (fp->fInputIdx <= fAnchorStart) {
                    // We are at the start input.  Success.
                    break;
                }
                // Check whether character just before the current pos is a new-line
                U_ASSERT(fp->fInputIdx <= fAnchorLimit);
                char16_t  c = inputBuf[fp->fInputIdx - 1];
                if (c != 0x0a) {
                    // Not at the start of a line.  Back-track out.
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;

        case URX_BACKSLASH_B:          // Test for word boundaries
            {
                UBool success = isChunkWordBoundary(static_cast<int32_t>(fp->fInputIdx));
                success ^= static_cast<UBool>(opValue != 0); // flip sense for \B
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_BU:          // Test for word boundaries, Unicode-style
            {
                UBool success = isUWordBoundary(fp->fInputIdx, status);
                success ^= static_cast<UBool>(opValue != 0); // flip sense for \B
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_D:            // Test for decimal digit
            {
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                int8_t ctype = u_charType(c);     // TODO:  make a unicode set for this.  Will be faster.
                UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
                success ^= static_cast<UBool>(opValue != 0); // flip sense for \D
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_G:          // Test for position at end of previous match
            if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==false && fp->fInputIdx==fActiveStart))) {
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_BACKSLASH_H:            // Test for \h, horizontal white space.
            {
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                int8_t ctype = u_charType(c);
                UBool success = (ctype == U_SPACE_SEPARATOR || c == 9);  // SPACE_SEPARATOR || TAB
                success ^= static_cast<UBool>(opValue != 0);  // flip sense for \H
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_R:            // Test for \R, any line break sequence.
            {
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (isLineTerminator(c)) {
                    if (c == 0x0d && fp->fInputIdx < fActiveLimit) {
                        // Check for CR/LF sequence. Consume both together when found.
                        char16_t c2;
                        U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2);
                        if (c2 != 0x0a) {
                            U16_PREV(inputBuf, 0, fp->fInputIdx, c2);
                        }
                    }
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_V:         // Any single code point line ending.
            {
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                UBool success = isLineTerminator(c);
                success ^= static_cast<UBool>(opValue != 0); // flip sense for \V
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_BACKSLASH_X:
            //  Match a Grapheme, as defined by Unicode UAX 29.

            // Fail if at end of input
            if (fp->fInputIdx >= fActiveLimit) {
                fHitEnd = true;
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                break;
            }

            fp->fInputIdx = followingGCBoundary(fp->fInputIdx, status);
            if (fp->fInputIdx >= fActiveLimit) {
                fHitEnd = true;
                fp->fInputIdx = fActiveLimit;
            }
            break;


        case URX_BACKSLASH_Z:          // Test for end of Input
            if (fp->fInputIdx < fAnchorLimit) {
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            } else {
                fHitEnd = true;
                fRequireEnd = true;
            }
            break;



        case URX_STATIC_SETREF:
            {
                // Test input character against one of the predefined sets
                //    (Word Characters, for example)
                // The high bit of the op value is a flag for the match polarity.
                //    0:   success if input char is in set.
                //    1:   success if input char is not in set.
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
                opValue &= ~URX_NEG_SET;
                U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);

                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c < 256) {
                    Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
                    if (s8.contains(c)) {
                        success = !success;
                    }
                } else {
                    const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
                    if (s.contains(c)) {
                        success = !success;
                    }
                }
                if (!success) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_STAT_SETREF_N:
            {
                // Test input character for NOT being a member of  one of
                //    the predefined sets (Word Characters, for example)
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);

                UChar32  c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c < 256) {
                    Regex8BitSet &s8 = RegexStaticSets::gStaticSets->fPropSets8[opValue];
                    if (s8.contains(c) == false) {
                        break;
                    }
                } else {
                    const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[opValue];
                    if (s.contains(c) == false) {
                        break;
                    }
                }
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_SETREF:
            {
                if (fp->fInputIdx >= fActiveLimit) {
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                U_ASSERT(opValue > 0 && opValue < fSets->size());

                // There is input left.  Pick up one char and test it for set membership.
                UChar32  c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c<256) {
                    Regex8BitSet *s8 = &fPattern->fSets8[opValue];
                    if (s8->contains(c)) {
                        // The character is in the set.  A Match.
                        break;
                    }
                } else {
                    UnicodeSet* s = static_cast<UnicodeSet*>(fSets->elementAt(opValue));
                    if (s->contains(c)) {
                        // The character is in the set.  A Match.
                        break;
                    }
                }

                // the character wasn't in the set.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_DOTANY:
            {
                // . matches anything, but stops at end-of-line.
                if (fp->fInputIdx >= fActiveLimit) {
                    // At end of input.  Match failed.  Backtrack out.
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                // There is input left.  Advance over one char, unless we've hit end-of-line
                UChar32  c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (isLineTerminator(c)) {
                    // End of line in normal mode.   . does not match.
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }
            }
            break;


        case URX_DOTANY_ALL:
            {
                // . in dot-matches-all (including new lines) mode
                if (fp->fInputIdx >= fActiveLimit) {
                    // At end of input.  Match failed.  Backtrack out.
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                // There is input left.  Advance over one char, except if we are
                //   at a cr/lf, advance over both of them.
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c==0x0d && fp->fInputIdx < fActiveLimit) {
                    // In the case of a CR/LF, we need to advance over both.
                    if (inputBuf[fp->fInputIdx] == 0x0a) {
                        U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
                    }
                }
            }
            break;


        case URX_DOTANY_UNIX:
            {
                // '.' operator, matches all, but stops at end-of-line.
                //   UNIX_LINES mode, so 0x0a is the only recognized line ending.
                if (fp->fInputIdx >= fActiveLimit) {
                    // At end of input.  Match failed.  Backtrack out.
                    fHitEnd = true;
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                // There is input left.  Advance over one char, unless we've hit end-of-line
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (c == 0x0a) {
                    // End of line in normal mode.   '.' does not match the \n
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;


        case URX_JMP:
            fp->fPatIdx = opValue;
            break;

        case URX_FAIL:
            isMatch = false;
            goto breakFromLoop;

        case URX_JMP_SAV:
            U_ASSERT(opValue < fPattern->fCompiledPat->size());
            fp = StateSave(fp, fp->fPatIdx, status);       // State save to loc following current
            fp->fPatIdx = opValue;                         // Then JMP.
            break;

        case URX_JMP_SAV_X:
            // This opcode is used with (x)+, when x can match a zero length string.
            // Same as JMP_SAV, except conditional on the match having made forward progress.
            // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
            //   data address of the input position at the start of the loop.
            {
                U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
                int32_t stoOp = static_cast<int32_t>(pat[opValue - 1]);
                U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
                int32_t  frameLoc = URX_VAL(stoOp);
                U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
                int32_t prevInputIdx = static_cast<int32_t>(fp->fExtra[frameLoc]);
                U_ASSERT(prevInputIdx <= fp->fInputIdx);
                if (prevInputIdx < fp->fInputIdx) {
                    // The match did make progress.  Repeat the loop.
                    fp = StateSave(fp, fp->fPatIdx, status);  // State save to loc following current
                    fp->fPatIdx = opValue;
                    fp->fExtra[frameLoc] = fp->fInputIdx;
                }
                // If the input position did not advance, we do nothing here,
                //   execution will fall out of the loop.
            }
            break;

        case URX_CTR_INIT:
            {
                U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
                fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero

                // Pick up the three extra operands that CTR_INIT has, and
                //    skip the pattern location counter past
                int32_t instrOperandLoc = static_cast<int32_t>(fp->fPatIdx);
                fp->fPatIdx += 3;
                int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
                int32_t minCount = static_cast<int32_t>(pat[instrOperandLoc + 1]);
                int32_t maxCount = static_cast<int32_t>(pat[instrOperandLoc + 2]);
                U_ASSERT(minCount>=0);
                U_ASSERT(maxCount>=minCount || maxCount==-1);
                U_ASSERT(loopLoc>=fp->fPatIdx);

                if (minCount == 0) {
                    fp = StateSave(fp, loopLoc+1, status);
                }
                if (maxCount == -1) {
                    fp->fExtra[opValue+1] = fp->fInputIdx;   //  For loop breaking.
                } else if (maxCount == 0) {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;

        case URX_CTR_LOOP:
            {
                U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
                int32_t initOp = static_cast<int32_t>(pat[opValue]);
                U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
                int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
                int32_t minCount = static_cast<int32_t>(pat[opValue + 2]);
                int32_t maxCount = static_cast<int32_t>(pat[opValue + 3]);
                (*pCounter)++;
                if (static_cast<uint64_t>(*pCounter) >= static_cast<uint32_t>(maxCount) && maxCount != -1) {
                    U_ASSERT(*pCounter == maxCount);
                    break;
                }
                if (*pCounter >= minCount) {
                    if (maxCount == -1) {
                        // Loop has no hard upper bound.
                        // Check that it is progressing through the input, break if it is not.
                        int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
                        if (fp->fInputIdx == *pLastInputIdx) {
                            break;
                        } else {
                            *pLastInputIdx = fp->fInputIdx;
                        }
                    }
                    fp = StateSave(fp, fp->fPatIdx, status);
                } else {
                    // Increment time-out counter. (StateSave() does it if count >= minCount)
                    fTickCounter--;
                    if (fTickCounter <= 0) {
                        IncrementTime(status);    // Re-initializes fTickCounter
                    }
                }
                fp->fPatIdx = opValue + 4;    // Loop back.
            }
            break;

        case URX_CTR_INIT_NG:
            {
                // Initialize a non-greedy loop
                U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
                fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero

                // Pick up the three extra operands that CTR_INIT_NG has, and
                //    skip the pattern location counter past
                int32_t instrOperandLoc = static_cast<int32_t>(fp->fPatIdx);
                fp->fPatIdx += 3;
                int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
                int32_t minCount = static_cast<int32_t>(pat[instrOperandLoc + 1]);
                int32_t maxCount = static_cast<int32_t>(pat[instrOperandLoc + 2]);
                U_ASSERT(minCount>=0);
                U_ASSERT(maxCount>=minCount || maxCount==-1);
                U_ASSERT(loopLoc>fp->fPatIdx);
                if (maxCount == -1) {
                    fp->fExtra[opValue+1] = fp->fInputIdx;   //  Save initial input index for loop breaking.
                }

                if (minCount == 0) {
                    if (maxCount != 0) {
                        fp = StateSave(fp, fp->fPatIdx, status);
                    }
                    fp->fPatIdx = loopLoc+1;   // Continue with stuff after repeated block
                }
            }
            break;

        case URX_CTR_LOOP_NG:
            {
                // Non-greedy {min, max} loops
                U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
                int32_t initOp = static_cast<int32_t>(pat[opValue]);
                U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
                int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
                int32_t minCount = static_cast<int32_t>(pat[opValue + 2]);
                int32_t maxCount = static_cast<int32_t>(pat[opValue + 3]);

                (*pCounter)++;
                if (static_cast<uint64_t>(*pCounter) >= static_cast<uint32_t>(maxCount) && maxCount != -1) {
                    // The loop has matched the maximum permitted number of times.
                    //   Break out of here with no action.  Matching will
                    //   continue with the following pattern.
                    U_ASSERT(*pCounter == maxCount);
                    break;
                }

                if (*pCounter < minCount) {
                    // We haven't met the minimum number of matches yet.
                    //   Loop back for another one.
                    fp->fPatIdx = opValue + 4;    // Loop back.
                    fTickCounter--;
                    if (fTickCounter <= 0) {
                        IncrementTime(status);    // Re-initializes fTickCounter
                    }
                } else {
                    // We do have the minimum number of matches.

                    // If there is no upper bound on the loop iterations, check that the input index
                    // is progressing, and stop the loop if it is not.
                    if (maxCount == -1) {
                        int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
                        if (fp->fInputIdx == *pLastInputIdx) {
                            break;
                        }
                        *pLastInputIdx = fp->fInputIdx;
                    }

                    // Loop Continuation: we will fall into the pattern following the loop
                    //   (non-greedy, don't execute loop body first), but first do
                    //   a state save to the top of the loop, so that a match failure
                    //   in the following pattern will try another iteration of the loop.
                    fp = StateSave(fp, opValue + 4, status);
                }
            }
            break;

        case URX_STO_SP:
            U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
            fData[opValue] = fStack->size();
            break;

        case URX_LD_SP:
            {
                U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
                int32_t newStackSize = static_cast<int32_t>(fData[opValue]);
                U_ASSERT(newStackSize <= fStack->size());
                int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
                if (newFP == reinterpret_cast<int64_t*>(fp)) {
                    break;
                }
                int32_t j;
                for (j=0; j<fFrameSize; j++) {
                    newFP[j] = reinterpret_cast<int64_t*>(fp)[j];
                }
                fp = reinterpret_cast<REStackFrame*>(newFP);
                fStack->setSize(newStackSize);
            }
            break;

        case URX_BACKREF:
            {
                U_ASSERT(opValue < fFrameSize);
                int64_t groupStartIdx = fp->fExtra[opValue];
                int64_t groupEndIdx   = fp->fExtra[opValue+1];
                U_ASSERT(groupStartIdx <= groupEndIdx);
                int64_t inputIndex = fp->fInputIdx;
                if (groupStartIdx < 0) {
                    // This capture group has not participated in the match thus far,
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize)); // FAIL, no match.
                    break;
                }
                UBool success = true;
                for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
                    if (inputIndex >= fActiveLimit) {
                        success = false;
                        fHitEnd = true;
                        break;
                    }
                    if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
                        success = false;
                        break;
                    }
                }
                if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) &&
                        inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) {
                    // Capture group ended with an unpaired lead surrogate.
                    // Back reference is not permitted to match lead only of a surrogatge pair.
                    success = false;
                }
                if (success) {
                    fp->fInputIdx = inputIndex;
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;

        case URX_BACKREF_I:
            {
                U_ASSERT(opValue < fFrameSize);
                int64_t groupStartIdx = fp->fExtra[opValue];
                int64_t groupEndIdx   = fp->fExtra[opValue+1];
                U_ASSERT(groupStartIdx <= groupEndIdx);
                if (groupStartIdx < 0) {
                    // This capture group has not participated in the match thus far,
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize)); // FAIL, no match.
                    break;
                }
                CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
                CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);

                //   Note: if the capture group match was of an empty string the backref
                //         match succeeds.  Verified by testing:  Perl matches succeed
                //         in this case, so we do too.

                UBool success = true;
                for (;;) {
                    UChar32 captureGroupChar = captureGroupItr.next();
                    if (captureGroupChar == U_SENTINEL) {
                        success = true;
                        break;
                    }
                    UChar32 inputChar = inputItr.next();
                    if (inputChar == U_SENTINEL) {
                        success = false;
                        fHitEnd = true;
                        break;
                    }
                    if (inputChar != captureGroupChar) {
                        success = false;
                        break;
                    }
                }

                if (success && inputItr.inExpansion()) {
                    // We obtained a match by consuming part of a string obtained from
                    // case-folding a single code point of the input text.
                    // This does not count as an overall match.
                    success = false;
                }

                if (success) {
                    fp->fInputIdx = inputItr.getIndex();
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;

        case URX_STO_INP_LOC:
            {
                U_ASSERT(opValue >= 0 && opValue < fFrameSize);
                fp->fExtra[opValue] = fp->fInputIdx;
            }
            break;

        case URX_JMPX:
            {
                int32_t instrOperandLoc = static_cast<int32_t>(fp->fPatIdx);
                fp->fPatIdx += 1;
                int32_t dataLoc  = URX_VAL(pat[instrOperandLoc]);
                U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
                int32_t savedInputIdx = static_cast<int32_t>(fp->fExtra[dataLoc]);
                U_ASSERT(savedInputIdx <= fp->fInputIdx);
                if (savedInputIdx < fp->fInputIdx) {
                    fp->fPatIdx = opValue;                               // JMP
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize)); // FAIL, no progress in loop.
                }
            }
            break;

        case URX_LA_START:
            {
                // Entering a look around block.
                // Save Stack Ptr, Input Pos.
                U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
                fData[opValue]   = fStack->size();
                fData[opValue+1] = fp->fInputIdx;
                fData[opValue+2] = fActiveStart;
                fData[opValue+3] = fActiveLimit;
                fActiveStart     = fLookStart;          // Set the match region change for
                fActiveLimit     = fLookLimit;          //   transparent bounds.
            }
            break;

        case URX_LA_END:
            {
                // Leaving a look around block.
                //  restore Stack Ptr, Input Pos to positions they had on entry to block.
                U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize);
                int32_t stackSize = fStack->size();
                int32_t newStackSize = static_cast<int32_t>(fData[opValue]);
                U_ASSERT(stackSize >= newStackSize);
                if (stackSize > newStackSize) {
                    // Copy the current top frame back to the new (cut back) top frame.
                    //   This makes the capture groups from within the look-ahead
                    //   expression available.
                    int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
                    int32_t j;
                    for (j=0; j<fFrameSize; j++) {
                        newFP[j] = reinterpret_cast<int64_t*>(fp)[j];
                    }
                    fp = reinterpret_cast<REStackFrame*>(newFP);
                    fStack->setSize(newStackSize);
                }
                fp->fInputIdx = fData[opValue+1];

                // Restore the active region bounds in the input string; they may have
                //    been changed because of transparent bounds on a Region.
                fActiveStart = fData[opValue+2];
                fActiveLimit = fData[opValue+3];
                U_ASSERT(fActiveStart >= 0);
                U_ASSERT(fActiveLimit <= fInputLength);
            }
            break;

        case URX_ONECHAR_I:
            if (fp->fInputIdx < fActiveLimit) {
                UChar32 c;
                U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
                if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
                    break;
                }
            } else {
                fHitEnd = true;
            }
            fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            break;

        case URX_STRING_I:
            // Case-insensitive test input against a literal string.
            // Strings require two slots in the compiled pattern, one for the
            //   offset to the string text, and one for the length.
            //   The compiled string has already been case folded.
            {
                const char16_t *patternString = litText + opValue;

                op = static_cast<int32_t>(pat[fp->fPatIdx]);
                fp->fPatIdx++;
                opType  = URX_TYPE(op);
                opValue = URX_VAL(op);
                U_ASSERT(opType == URX_STRING_LEN);
                int32_t patternStringLen = opValue;  // Length of the string from the pattern.

                UChar32      cText;
                UChar32      cPattern;
                UBool        success = true;
                int32_t      patternStringIdx  = 0;
                CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
                while (patternStringIdx < patternStringLen) {
                    U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
                    cText = inputIterator.next();
                    if (cText != cPattern) {
                        success = false;
                        if (cText == U_SENTINEL) {
                            fHitEnd = true;
                        }
                        break;
                    }
                }
                if (inputIterator.inExpansion()) {
                    success = false;
                }

                if (success) {
                    fp->fInputIdx = inputIterator.getIndex();
                } else {
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                }
            }
            break;

        case URX_LB_START:
            {
                // Entering a look-behind block.
                // Save Stack Ptr, Input Pos and active input region.
                //   TODO:  implement transparent bounds.  Ticket #6067
                U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
                fData[opValue]   = fStack->size();
                fData[opValue+1] = fp->fInputIdx;
                // Save input string length, then reset to pin any matches to end at
                //   the current position.
                fData[opValue+2] = fActiveStart;
                fData[opValue+3] = fActiveLimit;
                fActiveStart     = fRegionStart;
                fActiveLimit     = fp->fInputIdx;
                // Init the variable containing the start index for attempted matches.
                fData[opValue+4] = -1;
            }
            break;


        case URX_LB_CONT:
            {
                // Positive Look-Behind, at top of loop checking for matches of LB expression
                //    at all possible input starting positions.

                // Fetch the min and max possible match lengths.  They are the operands
                //   of this op in the pattern.
                int32_t minML = static_cast<int32_t>(pat[fp->fPatIdx++]);
                int32_t maxML = static_cast<int32_t>(pat[fp->fPatIdx++]);
                U_ASSERT(minML <= maxML);
                U_ASSERT(minML >= 0);

                // Fetch (from data) the last input index where a match was attempted.
                U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
                int64_t  &lbStartIdx = fData[opValue+4];
                if (lbStartIdx < 0) {
                    // First time through loop.
                    lbStartIdx = fp->fInputIdx - minML;
                    if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
                        U16_SET_CP_START(inputBuf, 0, lbStartIdx);
                    }
                } else {
                    // 2nd through nth time through the loop.
                    // Back up start position for match by one.
                    if (lbStartIdx == 0) {
                        lbStartIdx--;
                    } else {
                        U16_BACK_1(inputBuf, 0, lbStartIdx);
                    }
                }

                if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
                    // We have tried all potential match starting points without
                    //  getting a match.  Backtrack out, and out of the
                    //   Look Behind altogether.
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    fActiveStart = fData[opValue+2];
                    fActiveLimit = fData[opValue+3];
                    U_ASSERT(fActiveStart >= 0);
                    U_ASSERT(fActiveLimit <= fInputLength);
                    break;
                }

                //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
                //      (successful match will fall off the end of the loop.)
                fp = StateSave(fp, fp->fPatIdx-3, status);
                fp->fInputIdx =  lbStartIdx;
            }
            break;

        case URX_LB_END:
            // End of a look-behind block, after a successful match.
            {
                U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
                if (fp->fInputIdx != fActiveLimit) {
                    //  The look-behind expression matched, but the match did not
                    //    extend all the way to the point that we are looking behind from.
                    //  FAIL out of here, which will take us back to the LB_CONT, which
                    //     will retry the match starting at another position or fail
                    //     the look-behind altogether, whichever is appropriate.
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                // Look-behind match is good.  Restore the original input string region,
                //   which had been truncated to pin the end of the lookbehind match to the
                //   position being looked-behind.
                fActiveStart = fData[opValue+2];
                fActiveLimit = fData[opValue+3];
                U_ASSERT(fActiveStart >= 0);
                U_ASSERT(fActiveLimit <= fInputLength);
            }
            break;


        case URX_LBN_CONT:
            {
                // Negative Look-Behind, at top of loop checking for matches of LB expression
                //    at all possible input starting positions.

                // Fetch the extra parameters of this op.
                int32_t minML = static_cast<int32_t>(pat[fp->fPatIdx++]);
                int32_t maxML = static_cast<int32_t>(pat[fp->fPatIdx++]);
                int32_t continueLoc = static_cast<int32_t>(pat[fp->fPatIdx++]);
                continueLoc = URX_VAL(continueLoc);
                U_ASSERT(minML <= maxML);
                U_ASSERT(minML >= 0);
                U_ASSERT(continueLoc > fp->fPatIdx);

                // Fetch (from data) the last input index where a match was attempted.
                U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
                int64_t  &lbStartIdx = fData[opValue+4];
                if (lbStartIdx < 0) {
                    // First time through loop.
                    lbStartIdx = fp->fInputIdx - minML;
                    if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
                        U16_SET_CP_START(inputBuf, 0, lbStartIdx);
                    }
                } else {
                    // 2nd through nth time through the loop.
                    // Back up start position for match by one.
                    if (lbStartIdx == 0) {
                        lbStartIdx--;   // Because U16_BACK is unsafe starting at 0.
                    } else {
                        U16_BACK_1(inputBuf, 0, lbStartIdx);
                    }
                }

                if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
                    // We have tried all potential match starting points without
                    //  getting a match, which means that the negative lookbehind as
                    //  a whole has succeeded.  Jump forward to the continue location
                    fActiveStart = fData[opValue+2];
                    fActiveLimit = fData[opValue+3];
                    U_ASSERT(fActiveStart >= 0);
                    U_ASSERT(fActiveLimit <= fInputLength);
                    fp->fPatIdx = continueLoc;
                    break;
                }

                //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
                //      (successful match will cause a FAIL out of the loop altogether.)
                fp = StateSave(fp, fp->fPatIdx-4, status);
                fp->fInputIdx =  lbStartIdx;
            }
            break;

        case URX_LBN_END:
            // End of a negative look-behind block, after a successful match.
            {
                U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize);
                if (fp->fInputIdx != fActiveLimit) {
                    //  The look-behind expression matched, but the match did not
                    //    extend all the way to the point that we are looking behind from.
                    //  FAIL out of here, which will take us back to the LB_CONT, which
                    //     will retry the match starting at another position or succeed
                    //     the look-behind altogether, whichever is appropriate.
                    fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
                    break;
                }

                // Look-behind expression matched, which means look-behind test as
                //   a whole Fails

                //   Restore the original input string length, which had been truncated
                //   inorder to pin the end of the lookbehind match
                //   to the position being looked-behind.
                fActiveStart = fData[opValue+2];
                fActiveLimit = fData[opValue+3];
                U_ASSERT(fActiveStart >= 0);
                U_ASSERT(fActiveLimit <= fInputLength);

                // Restore original stack position, discarding any state saved
                //   by the successful pattern match.
                U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
                int32_t newStackSize = static_cast<int32_t>(fData[opValue]);
                U_ASSERT(fStack->size() > newStackSize);
                fStack->setSize(newStackSize);

                //  FAIL, which will take control back to someplace
                //  prior to entering the look-behind test.
                fp = reinterpret_cast<REStackFrame*>(fStack->popFrame(fFrameSize));
            }
            break;


        case URX_LOOP_SR_I:
            // Loop Initialization for the optimized implementation of
            //     [some character set]*
            //   This op scans through all matching input.
            //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
            {
                U_ASSERT(opValue > 0 && opValue < fSets->size());
                Regex8BitSet *s8 = &fPattern->fSets8[opValue];
                UnicodeSet* s = static_cast<UnicodeSet*>(fSets->elementAt(opValue));

                // Loop through input, until either the input is exhausted or
                //   we reach a character that is not a member of the set.
                int32_t ix = static_cast<int32_t>(fp->fInputIdx);
                for (;;) {
                    if (ix >= fActiveLimit) {
                        fHitEnd = true;
                        break;
                    }
                    UChar32   c;
                    U16_NEXT(inputBuf, ix, fActiveLimit, c);
                    if (c<256) {
                        if (s8->contains(c) == false) {
                            U16_BACK_1(inputBuf, 0, ix);
                            break;
                        }
                    } else {
                        if (s->contains(c) == false) {
                            U16_BACK_1(inputBuf, 0, ix);
                            break;
                        }
                    }
                }

                // If there were no matching characters, skip over the loop altogether.
                //   The loop doesn't run at all, a * op always succeeds.
                if (ix == fp->fInputIdx) {
                    fp->fPatIdx++;   // skip the URX_LOOP_C op.
                    break;
                }

                // Peek ahead in the compiled pattern, to the URX_LOOP_C that
                //   must follow.  It's operand is the stack location
                //   that holds the starting input index for the match of this [set]*
                int32_t loopcOp = static_cast<int32_t>(pat[fp->fPatIdx]);
                U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
                int32_t stackLoc = URX_VAL(loopcOp);
                U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
                fp->fExtra[stackLoc] = fp->fInputIdx;
                fp->fInputIdx = ix;

                // Save State to the URX_LOOP_C op that follows this one,
                //   so that match failures in the following code will return to there.
                //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
                fp = StateSave(fp, fp->fPatIdx, status);
                fp->fPatIdx++;
            }
            break;


        case URX_LOOP_DOT_I:
            // Loop Initialization for the optimized implementation of .*
            //   This op scans through all remaining input.
            //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
            {
                // Loop through input until the input is exhausted (we reach an end-of-line)
                // In DOTALL mode, we can just go straight to the end of the input.
                int32_t ix;
                if ((opValue & 1) == 1) {
                    // Dot-matches-All mode.  Jump straight to the end of the string.
                    ix = static_cast<int32_t>(fActiveLimit);
                    fHitEnd = true;
                } else {
                    // NOT DOT ALL mode.  Line endings do not match '.'
                    // Scan forward until a line ending or end of input.
                    ix = static_cast<int32_t>(fp->fInputIdx);
                    for (;;) {
                        if (ix >= fActiveLimit) {
                            fHitEnd = true;
                            break;
                        }
                        UChar32   c;
                        U16_NEXT(inputBuf, ix, fActiveLimit, c);   // c = inputBuf[ix++]
                        if ((c & 0x7f) <= 0x29) {          // Fast filter of non-new-line-s
                            if ((c == 0x0a) ||             //  0x0a is newline in both modes.
                                (((opValue & 2) == 0) &&    // IF not UNIX_LINES mode
                                   isLineTerminator(c))) {
                                //  char is a line ending.  Put the input pos back to the
                                //    line ending char, and exit the scanning loop.
                                U16_BACK_1(inputBuf, 0, ix);
                                break;
                            }
                        }
                    }
                }

                // If there were no matching characters, skip over the loop altogether.
                //   The loop doesn't run at all, a * op always succeeds.
                if (ix == fp->fInputIdx) {
                    fp->fPatIdx++;   // skip the URX_LOOP_C op.
                    break;
                }

                // Peek ahead in the compiled pattern, to the URX_LOOP_C that
                //   must follow.  It's operand is the stack location
                //   that holds the starting input index for the match of this .*
                int32_t loopcOp = static_cast<int32_t>(pat[fp->fPatIdx]);
                U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
                int32_t stackLoc = URX_VAL(loopcOp);
                U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
                fp->fExtra[stackLoc] = fp->fInputIdx;
                fp->fInputIdx = ix;

                // Save State to the URX_LOOP_C op that follows this one,
                //   so that match failures in the following code will return to there.
                //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
                fp = StateSave(fp, fp->fPatIdx, status);
                fp->fPatIdx++;
            }
            break;


        case URX_LOOP_C:
            {
                U_ASSERT(opValue>=0 && opValue<fFrameSize);
                backSearchIndex = static_cast<int32_t>(fp->fExtra[opValue]);
                U_ASSERT(backSearchIndex <= fp->fInputIdx);
                if (backSearchIndex == fp->fInputIdx) {
                    // We've backed up the input idx to the point that the loop started.
                    // The loop is done.  Leave here without saving state.
                    //  Subsequent failures won't come back here.
                    break;
                }
                // Set up for the next iteration of the loop, with input index
                //   backed up by one from the last time through,
                //   and a state save to this instruction in case the following code fails again.
                //   (We're going backwards because this loop emulates stack unwinding, not
                //    the initial scan forward.)
                U_ASSERT(fp->fInputIdx > 0);
                UChar32 prevC;
                U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?

                if (prevC == 0x0a &&
                    fp->fInputIdx > backSearchIndex &&
                    inputBuf[fp->fInputIdx-1] == 0x0d) {
                    int32_t prevOp = static_cast<int32_t>(pat[fp->fPatIdx - 2]);
                    if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
                        // .*, stepping back over CRLF pair.
                        U16_BACK_1(inputBuf, 0, fp->fInputIdx);
                    }
                }


                fp = StateSave(fp, fp->fPatIdx-1, status);
            }
            break;



        default:
            // Trouble.  The compiled pattern contains an entry with an
            //           unrecognized type tag.
            UPRV_UNREACHABLE_ASSERT;
            // Unknown opcode type in opType = URX_TYPE(pat[fp->fPatIdx]). But we have
            // reports of this in production code, don't use UPRV_UNREACHABLE_EXIT.
            // See ICU-21669.
            status = U_INTERNAL_PROGRAM_ERROR;
        }

        if (U_FAILURE(status)) {
            isMatch = false;
            break;
        }
    }

breakFromLoop:
    fMatch = isMatch;
    if (isMatch) {
        fLastMatchEnd = fMatchEnd;
        fMatchStart   = startIdx;
        fMatchEnd     = fp->fInputIdx;
    }

#ifdef REGEX_RUN_DEBUG
    if (fTraceDebug) {
        if (isMatch) {
            printf("Match.  start=%ld   end=%ld\n\n", fMatchStart, fMatchEnd);
        } else {
            printf("No match\n\n");
        }
    }
#endif

    fFrame = fp;                // The active stack frame when the engine stopped.
                                //   Contains the capture group results that we need to
                                //    access later.
}