jetstream/defaults/fenix.toml (134 lines of code) (raw):
[metrics]
daily = ["retained", "client_level_daily_active_users_v2"]
weekly = [
"retained",
"active_hours",
"search_count",
"serp_ad_clicks",
"tagged_search_count",
"total_uri_count",
"days_of_use",
"client_level_daily_active_users_v2",
]
overall = [
"active_hours",
"serp_ad_clicks",
"organic_searches",
"search_count",
"searches_with_ads",
"tagged_follow_on_searches",
"total_uri_count",
"days_of_use",
"client_level_daily_active_users_v2",
]
preenrollment_weekly = [
"active_hours",
"serp_ad_clicks",
"organic_searches",
"search_count",
"searches_with_ads",
"tagged_follow_on_searches",
"total_uri_count",
"days_of_use",
"client_level_daily_active_users_v2",
"tagged_search_count",
]
preenrollment_days28 = [
"active_hours",
"serp_ad_clicks",
"organic_searches",
"search_count",
"searches_with_ads",
"tagged_follow_on_searches",
"total_uri_count",
"days_of_use",
"client_level_daily_active_users_v2",
"tagged_search_count",
]
[metrics.retained]
select_expression = "COALESCE(COUNT(document_id), 0) > 0"
data_source = "baseline"
[metrics.retained.statistics]
binomial = {}
##
[metrics.days_of_use.statistics]
deciles = {}
bootstrap_mean = { drop_highest = 0 }
empirical_cdf = {}
[metrics.days_of_use.statistics.linear_model_mean]
drop_highest = 0.0
[metrics.days_of_use.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.active_hours.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.active_hours.statistics.linear_model_mean]
[metrics.active_hours.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.serp_ad_clicks]
select_expression = "{{agg_sum('ad_click')}}"
data_source = "mobile_search_clients_engines_sources_daily"
[metrics.serp_ad_clicks.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.serp_ad_clicks.statistics.linear_model_mean]
[metrics.serp_ad_clicks.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.organic_searches]
select_expression = "{{agg_sum('organic')}}"
data_source = "mobile_search_clients_engines_sources_daily"
[metrics.organic_searches.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.organic_searches.statistics.linear_model_mean]
[metrics.organic_searches.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.search_count.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.search_count.statistics.linear_model_mean]
[metrics.search_count.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.searches_with_ads]
select_expression = "{{agg_sum('search_with_ads')}}"
data_source = "mobile_search_clients_engines_sources_daily"
[metrics.searches_with_ads.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.searches_with_ads.statistics.linear_model_mean]
[metrics.searches_with_ads.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.tagged_search_count.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.tagged_search_count.statistics.linear_model_mean]
[metrics.tagged_search_count.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.tagged_follow_on_searches]
select_expression = "{{agg_sum('tagged_follow_on')}}"
data_source = "mobile_search_clients_engines_sources_daily"
[metrics.tagged_follow_on_searches.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.tagged_follow_on_searches.statistics.linear_model_mean]
[metrics.tagged_follow_on_searches.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
##
[metrics.total_uri_count]
select_expression = "{{agg_sum('metrics.counter.events_normal_and_private_uri_count')}}"
data_source = "metrics"
[metrics.total_uri_count.statistics]
deciles = {}
bootstrap_mean = {}
[metrics.total_uri_count.statistics.linear_model_mean]
[metrics.total_uri_count.statistics.linear_model_mean.covariate_adjustment]
period = "preenrollment_week"
[metrics.client_level_daily_active_users_v2.statistics.per_client_dau_impact]
pre_treatments = ['normalize_over_analysis_period']