jetstream/defaults/fenix.toml (134 lines of code) (raw):

[metrics] daily = ["retained", "client_level_daily_active_users_v2"] weekly = [ "retained", "active_hours", "search_count", "serp_ad_clicks", "tagged_search_count", "total_uri_count", "days_of_use", "client_level_daily_active_users_v2", ] overall = [ "active_hours", "serp_ad_clicks", "organic_searches", "search_count", "searches_with_ads", "tagged_follow_on_searches", "total_uri_count", "days_of_use", "client_level_daily_active_users_v2", ] preenrollment_weekly = [ "active_hours", "serp_ad_clicks", "organic_searches", "search_count", "searches_with_ads", "tagged_follow_on_searches", "total_uri_count", "days_of_use", "client_level_daily_active_users_v2", "tagged_search_count", ] preenrollment_days28 = [ "active_hours", "serp_ad_clicks", "organic_searches", "search_count", "searches_with_ads", "tagged_follow_on_searches", "total_uri_count", "days_of_use", "client_level_daily_active_users_v2", "tagged_search_count", ] [metrics.retained] select_expression = "COALESCE(COUNT(document_id), 0) > 0" data_source = "baseline" [metrics.retained.statistics] binomial = {} ## [metrics.days_of_use.statistics] deciles = {} bootstrap_mean = { drop_highest = 0 } empirical_cdf = {} [metrics.days_of_use.statistics.linear_model_mean] drop_highest = 0.0 [metrics.days_of_use.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.active_hours.statistics] deciles = {} bootstrap_mean = {} [metrics.active_hours.statistics.linear_model_mean] [metrics.active_hours.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.serp_ad_clicks] select_expression = "{{agg_sum('ad_click')}}" data_source = "mobile_search_clients_engines_sources_daily" [metrics.serp_ad_clicks.statistics] deciles = {} bootstrap_mean = {} [metrics.serp_ad_clicks.statistics.linear_model_mean] [metrics.serp_ad_clicks.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.organic_searches] select_expression = "{{agg_sum('organic')}}" data_source = "mobile_search_clients_engines_sources_daily" [metrics.organic_searches.statistics] deciles = {} bootstrap_mean = {} [metrics.organic_searches.statistics.linear_model_mean] [metrics.organic_searches.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.search_count.statistics] deciles = {} bootstrap_mean = {} [metrics.search_count.statistics.linear_model_mean] [metrics.search_count.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.searches_with_ads] select_expression = "{{agg_sum('search_with_ads')}}" data_source = "mobile_search_clients_engines_sources_daily" [metrics.searches_with_ads.statistics] deciles = {} bootstrap_mean = {} [metrics.searches_with_ads.statistics.linear_model_mean] [metrics.searches_with_ads.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.tagged_search_count.statistics] deciles = {} bootstrap_mean = {} [metrics.tagged_search_count.statistics.linear_model_mean] [metrics.tagged_search_count.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.tagged_follow_on_searches] select_expression = "{{agg_sum('tagged_follow_on')}}" data_source = "mobile_search_clients_engines_sources_daily" [metrics.tagged_follow_on_searches.statistics] deciles = {} bootstrap_mean = {} [metrics.tagged_follow_on_searches.statistics.linear_model_mean] [metrics.tagged_follow_on_searches.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" ## [metrics.total_uri_count] select_expression = "{{agg_sum('metrics.counter.events_normal_and_private_uri_count')}}" data_source = "metrics" [metrics.total_uri_count.statistics] deciles = {} bootstrap_mean = {} [metrics.total_uri_count.statistics.linear_model_mean] [metrics.total_uri_count.statistics.linear_model_mean.covariate_adjustment] period = "preenrollment_week" [metrics.client_level_daily_active_users_v2.statistics.per_client_dau_impact] pre_treatments = ['normalize_over_analysis_period']