benchmarks/JetStream2/worker/async-task.js (518 lines of code) (raw):

/* * Copyright (C) 2018 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ var Statistics = new (function () { this.min = function (values) { return Math.min.apply(Math, values); } this.max = function (values) { return Math.max.apply(Math, values); } this.sum = function (values) { return values.length ? values.reduce(function (a, b) { return a + b; }) : 0; } this.mean = function (values) { return this.sum(values) / values.length; } this.median = function (values) { return values.sort(function (a, b) { return a - b; })[Math.floor(values.length / 2)]; } this.squareSum = function (values) { return values.length ? values.reduce(function (sum, value) { return sum + value * value;}, 0) : 0; } // With sum and sum of squares, we can compute the sample standard deviation in O(1). // See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/ this.sampleStandardDeviation = function (numberOfSamples, sum, squareSum) { if (numberOfSamples < 2) return 0; return Math.sqrt(squareSum / (numberOfSamples - 1) - sum * sum / (numberOfSamples - 1) / numberOfSamples); } this.supportedConfidenceIntervalProbabilities = function () { var supportedProbabilities = []; for (var probability in tDistributionByOneSidedProbability) supportedProbabilities.push(oneSidedToTwoSidedProbability(probability).toFixed(2)); return supportedProbabilities } this.supportedOneSideTTestProbabilities = function () { return Object.keys(tDistributionByOneSidedProbability); } // Computes the delta d s.t. (mean - d, mean + d) is the confidence interval with the specified probability in O(1). this.confidenceIntervalDelta = function (probability, numberOfSamples, sum, squareSum) { var oneSidedProbability = twoSidedToOneSidedProbability(probability); if (!(oneSidedProbability in tDistributionByOneSidedProbability)) { throw 'We only support ' + this.supportedConfidenceIntervalProbabilities().map(function (probability) { return probability * 100 + '%'; } ).join(', ') + ' confidence intervals.'; } if (numberOfSamples - 2 < 0) return NaN; var deltas = tDistributionByOneSidedProbability[oneSidedProbability]; var degreesOfFreedom = numberOfSamples - 1; if (degreesOfFreedom > deltas.length) throw 'We only support up to ' + deltas.length + ' degrees of freedom'; // d = c * S/sqrt(numberOfSamples) where c ~ t-distribution(degreesOfFreedom) and S is the sample standard deviation. return deltas[degreesOfFreedom - 1] * this.sampleStandardDeviation(numberOfSamples, sum, squareSum) / Math.sqrt(numberOfSamples); } this.confidenceInterval = function (values, probability) { var sum = this.sum(values); var mean = sum / values.length; var delta = this.confidenceIntervalDelta(probability || 0.95, values.length, sum, this.squareSum(values)); return [mean - delta, mean + delta]; } // Welch's t-test (http://en.wikipedia.org/wiki/Welch%27s_t_test) this.testWelchsT = function (values1, values2, probability) { return this.computeWelchsT(values1, 0, values1.length, values2, 0, values2.length, probability).significantlyDifferent; } this.probabilityRangeForWelchsT = function (values1, values2) { var result = this.computeWelchsT(values1, 0, values1.length, values2, 0, values2.length); if (isNaN(result.t) || isNaN(result.degreesOfFreedom)) return {t: NaN, degreesOfFreedom:NaN, range: [null, null]}; var lowerBound = null; var upperBound = null; for (var probability in tDistributionByOneSidedProbability) { var twoSidedProbability = oneSidedToTwoSidedProbability(probability); if (result.t > tDistributionByOneSidedProbability[probability][Math.round(result.degreesOfFreedom - 1)]) lowerBound = twoSidedProbability; else if (lowerBound) { upperBound = twoSidedProbability; break; } } return {t: result.t, degreesOfFreedom: result.degreesOfFreedom, range: [lowerBound, upperBound]}; } this.computeWelchsT = function (values1, startIndex1, length1, values2, startIndex2, length2, probability) { var stat1 = sampleMeanAndVarianceForValues(values1, startIndex1, length1); var stat2 = sampleMeanAndVarianceForValues(values2, startIndex2, length2); var sumOfSampleVarianceOverSampleSize = stat1.variance / stat1.size + stat2.variance / stat2.size; var t = Math.abs((stat1.mean - stat2.mean) / Math.sqrt(sumOfSampleVarianceOverSampleSize)); // http://en.wikipedia.org/wiki/Welch–Satterthwaite_equation var degreesOfFreedom = sumOfSampleVarianceOverSampleSize * sumOfSampleVarianceOverSampleSize / (stat1.variance * stat1.variance / stat1.size / stat1.size / stat1.degreesOfFreedom + stat2.variance * stat2.variance / stat2.size / stat2.size / stat2.degreesOfFreedom); var minT = tDistributionByOneSidedProbability[twoSidedToOneSidedProbability(probability || 0.8)][Math.round(degreesOfFreedom - 1)]; return { t: t, degreesOfFreedom: degreesOfFreedom, significantlyDifferent: t > minT, }; } this.findRangesForChangeDetectionsWithWelchsTTest = function (values, segmentations, oneSidedPossibility=0.99) { if (!values.length) return []; const selectedRanges = []; const twoSidedFromOneSidedPossibility = 2 * oneSidedPossibility - 1; for (let i = 1; i + 2 < segmentations.length; i += 2) { let found = false; const previousMean = segmentations[i].value; const currentMean = segmentations[i + 1].value; console.assert(currentMean != previousMean); const currentChangePoint = segmentations[i].seriesIndex; const start = segmentations[i - 1].seriesIndex; const end = segmentations[i + 2].seriesIndex; for (let leftEdge = currentChangePoint - 2, rightEdge = currentChangePoint + 2; leftEdge >= start && rightEdge <= end; leftEdge--, rightEdge++) { const result = this.computeWelchsT(values, leftEdge, currentChangePoint - leftEdge, values, currentChangePoint, rightEdge - currentChangePoint, twoSidedFromOneSidedPossibility); if (result.significantlyDifferent) { selectedRanges.push({ startIndex: leftEdge, endIndex: rightEdge - 1, segmentationStartValue: previousMean, segmentationEndValue: currentMean }); found = true; break; } } if (!found && Statistics.debuggingTestingRangeNomination) console.log('Failed to find a testing range at', currentChangePoint, 'changing from', previousMean, 'to', currentMean); } return selectedRanges; }; function sampleMeanAndVarianceForValues(values, startIndex, length) { var sum = 0; for (var i = 0; i < length; i++) sum += values[startIndex + i]; var squareSum = 0; for (var i = 0; i < length; i++) squareSum += values[startIndex + i] * values[startIndex + i]; var sampleMean = sum / length; // FIXME: Maybe we should be using the biased sample variance. var unbiasedSampleVariance = (squareSum - sum * sum / length) / (length - 1); return { mean: sampleMean, variance: unbiasedSampleVariance, size: length, degreesOfFreedom: length - 1, } } this.movingAverage = function (values, backwardWindowSize, forwardWindowSize) { var averages = new Array(values.length); // We use naive O(n^2) algorithm for simplicy as well as to avoid accumulating round-off errors. for (var i = 0; i < values.length; i++) { var sum = 0; var count = 0; for (var j = i - backwardWindowSize; j <= i + forwardWindowSize; j++) { if (j >= 0 && j < values.length) { sum += values[j]; count++; } } averages[i] = sum / count; } return averages; } this.cumulativeMovingAverage = function (values) { var averages = new Array(values.length); var sum = 0; for (var i = 0; i < values.length; i++) { sum += values[i]; averages[i] = sum / (i + 1); } return averages; } this.exponentialMovingAverage = function (values, smoothingFactor) { var averages = new Array(values.length); var movingAverage = values[0]; averages[0] = movingAverage; for (var i = 1; i < values.length; i++) { movingAverage = smoothingFactor * values[i] + (1 - smoothingFactor) * movingAverage; averages[i] = movingAverage; } return averages; } // The return value is the starting indices of each segment. this.segmentTimeSeriesGreedyWithStudentsTTest = function (values, minLength) { if (values.length < 2) return [0]; var segments = new Array; recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, 0, values.length, minLength, segments); segments.push(values.length); return segments; } this.debuggingSegmentation = false; this.segmentTimeSeriesByMaximizingSchwarzCriterion = function (values, segmentCountWeight, gridSize) { // Split the time series into grids since splitIntoSegmentsUntilGoodEnough is O(n^2). var gridLength = gridSize || 500; var totalSegmentation = [0]; for (var gridCount = 0; gridCount < Math.ceil(values.length / gridLength); gridCount++) { var gridValues = values.slice(gridCount * gridLength, (gridCount + 1) * gridLength); var segmentation = splitIntoSegmentsUntilGoodEnough(gridValues, segmentCountWeight); if (Statistics.debuggingSegmentation) console.log('grid=' + gridCount, segmentation); for (var i = 1; i < segmentation.length - 1; i++) totalSegmentation.push(gridCount * gridLength + segmentation[i]); } if (Statistics.debuggingSegmentation) console.log('Final Segmentation', totalSegmentation); totalSegmentation.push(values.length); return totalSegmentation; } function recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex, length, minLength, segments) { var tMax = 0; var argTMax = null; for (var i = 1; i < length - 1; i++) { var firstLength = i; var secondLength = length - i; if (firstLength < minLength || secondLength < minLength) continue; var result = Statistics.computeWelchsT(values, startIndex, firstLength, values, startIndex + i, secondLength, 0.9); if (result.significantlyDifferent && result.t > tMax) { tMax = result.t; argTMax = i; } } if (!tMax) { segments.push(startIndex); return; } recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex, argTMax, minLength, segments); recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex + argTMax, length - argTMax, minLength, segments); } var tDistributionByOneSidedProbability = { 0.9: [ 3.077684, 1.885618, 1.637744, 1.533206, 1.475884, 1.439756, 1.414924, 1.396815, 1.383029, 1.372184, 1.363430, 1.356217, 1.350171, 1.345030, 1.340606, 1.336757, 1.333379, 1.330391, 1.327728, 1.325341, 1.323188, 1.321237, 1.319460, 1.317836, 1.316345, 1.314972, 1.313703, 1.312527, 1.311434, 1.310415, 1.309464, 1.308573, 1.307737, 1.306952, 1.306212, 1.305514, 1.304854, 1.304230, 1.303639, 1.303077, 1.302543, 1.302035, 1.301552, 1.301090, 1.300649, 1.300228, 1.299825, 1.299439, 1.299069, 1.298714, 1.298373, 1.298045, 1.297730, 1.297426, 1.297134, 1.296853, 1.296581, 1.296319, 1.296066, 1.295821, 1.295585, 1.295356, 1.295134, 1.294920, 1.294712, 1.294511, 1.294315, 1.294126, 1.293942, 1.293763, 1.293589, 1.293421, 1.293256, 1.293097, 1.292941, 1.292790, 1.292643, 1.292500, 1.292360, 1.292224, 1.292091, 1.291961, 1.291835, 1.291711, 1.291591, 1.291473, 1.291358, 1.291246, 1.291136, 1.291029, 1.290924, 1.290821, 1.290721, 1.290623, 1.290527, 1.290432, 1.290340, 1.290250, 1.290161, 1.290075], 0.95: [ 6.313752, 2.919986, 2.353363, 2.131847, 2.015048, 1.943180, 1.894579, 1.859548, 1.833113, 1.812461, 1.795885, 1.782288, 1.770933, 1.761310, 1.753050, 1.745884, 1.739607, 1.734064, 1.729133, 1.724718, 1.720743, 1.717144, 1.713872, 1.710882, 1.708141, 1.705618, 1.703288, 1.701131, 1.699127, 1.697261, 1.695519, 1.693889, 1.692360, 1.690924, 1.689572, 1.688298, 1.687094, 1.685954, 1.684875, 1.683851, 1.682878, 1.681952, 1.681071, 1.680230, 1.679427, 1.678660, 1.677927, 1.677224, 1.676551, 1.675905, 1.675285, 1.674689, 1.674116, 1.673565, 1.673034, 1.672522, 1.672029, 1.671553, 1.671093, 1.670649, 1.670219, 1.669804, 1.669402, 1.669013, 1.668636, 1.668271, 1.667916, 1.667572, 1.667239, 1.666914, 1.666600, 1.666294, 1.665996, 1.665707, 1.665425, 1.665151, 1.664885, 1.664625, 1.664371, 1.664125, 1.663884, 1.663649, 1.663420, 1.663197, 1.662978, 1.662765, 1.662557, 1.662354, 1.662155, 1.661961, 1.661771, 1.661585, 1.661404, 1.661226, 1.661052, 1.660881, 1.660715, 1.660551, 1.660391, 1.660234], 0.975: [ 12.706205, 4.302653, 3.182446, 2.776445, 2.570582, 2.446912, 2.364624, 2.306004, 2.262157, 2.228139, 2.200985, 2.178813, 2.160369, 2.144787, 2.131450, 2.119905, 2.109816, 2.100922, 2.093024, 2.085963, 2.079614, 2.073873, 2.068658, 2.063899, 2.059539, 2.055529, 2.051831, 2.048407, 2.045230, 2.042272, 2.039513, 2.036933, 2.034515, 2.032245, 2.030108, 2.028094, 2.026192, 2.024394, 2.022691, 2.021075, 2.019541, 2.018082, 2.016692, 2.015368, 2.014103, 2.012896, 2.011741, 2.010635, 2.009575, 2.008559, 2.007584, 2.006647, 2.005746, 2.004879, 2.004045, 2.003241, 2.002465, 2.001717, 2.000995, 2.000298, 1.999624, 1.998972, 1.998341, 1.997730, 1.997138, 1.996564, 1.996008, 1.995469, 1.994945, 1.994437, 1.993943, 1.993464, 1.992997, 1.992543, 1.992102, 1.991673, 1.991254, 1.990847, 1.990450, 1.990063, 1.989686, 1.989319, 1.988960, 1.988610, 1.988268, 1.987934, 1.987608, 1.987290, 1.986979, 1.986675, 1.986377, 1.986086, 1.985802, 1.985523, 1.985251, 1.984984, 1.984723, 1.984467, 1.984217, 1.983972], 0.99: [ 31.820516, 6.964557, 4.540703, 3.746947, 3.364930, 3.142668, 2.997952, 2.896459, 2.821438, 2.763769, 2.718079, 2.680998, 2.650309, 2.624494, 2.602480, 2.583487, 2.566934, 2.552380, 2.539483, 2.527977, 2.517648, 2.508325, 2.499867, 2.492159, 2.485107, 2.478630, 2.472660, 2.467140, 2.462021, 2.457262, 2.452824, 2.448678, 2.444794, 2.441150, 2.437723, 2.434494, 2.431447, 2.428568, 2.425841, 2.423257, 2.420803, 2.418470, 2.416250, 2.414134, 2.412116, 2.410188, 2.408345, 2.406581, 2.404892, 2.403272, 2.401718, 2.400225, 2.398790, 2.397410, 2.396081, 2.394801, 2.393568, 2.392377, 2.391229, 2.390119, 2.389047, 2.388011, 2.387008, 2.386037, 2.385097, 2.384186, 2.383302, 2.382446, 2.381615, 2.380807, 2.380024, 2.379262, 2.378522, 2.377802, 2.377102, 2.376420, 2.375757, 2.375111, 2.374482, 2.373868, 2.373270, 2.372687, 2.372119, 2.371564, 2.371022, 2.370493, 2.369977, 2.369472, 2.368979, 2.368497, 2.368026, 2.367566, 2.367115, 2.366674, 2.366243, 2.365821, 2.365407, 2.365002, 2.364606, 2.364217] }; function oneSidedToTwoSidedProbability(probability) { return 2 * probability - 1; } function twoSidedToOneSidedProbability(probability) { return (1 - (1 - probability) / 2); } function splitIntoSegmentsUntilGoodEnough(values, BirgeAndMassartC) { if (values.length < 2) return [0, values.length]; var matrix = new SampleVarianceUpperTriangularMatrix(values); var SchwarzCriterionBeta = Math.log1p(values.length - 1) / values.length; BirgeAndMassartC = BirgeAndMassartC || 2.5; // Suggested by the authors. var BirgeAndMassartPenalization = function (segmentCount) { return segmentCount * (1 + BirgeAndMassartC * Math.log1p(values.length / segmentCount - 1)); } var segmentation; var minTotalCost = Infinity; var maxK = Math.min(50, values.length); for (var k = 1; k < maxK; k++) { var start = Date.now(); var result = findOptimalSegmentation(values, matrix, k); var cost = result.cost / values.length; var penalty = SchwarzCriterionBeta * BirgeAndMassartPenalization(k); if (cost + penalty < minTotalCost) { minTotalCost = cost + penalty; segmentation = result.segmentation; } else maxK = Math.min(maxK, k + 3); if (Statistics.debuggingSegmentation) console.log('splitIntoSegmentsUntilGoodEnough', k, Date.now() - start, cost + penalty); } return segmentation; } function allocateCostUpperTriangularForSegmentation(values, segmentCount) { // Dynamic programming. cost[i][k] = The cost to segmenting values up to i into k segments. var cost = new Array(values.length); for (var segmentEnd = 0; segmentEnd < values.length; segmentEnd++) cost[segmentEnd] = new Float32Array(segmentCount + 1); return cost; } function allocatePreviousNodeForSegmentation(values, segmentCount) { // previousNode[i][k] = The start of the last segment in an optimal segmentation that ends at i with k segments. var previousNode = new Array(values.length); for (var i = 0; i < values.length; i++) previousNode[i] = new Array(segmentCount + 1); return previousNode; } function findOptimalSegmentationInternal(cost, previousNode, values, costMatrix, segmentCount) { cost[0] = [0]; // The cost of segmenting single value is always 0. previousNode[0] = [-1]; for (var segmentStart = 0; segmentStart < values.length; segmentStart++) { var costOfOptimalSegmentationThatEndAtCurrentStart = cost[segmentStart]; for (var k = 0; k < segmentCount; k++) { var noSegmentationOfLenghtKEndsAtCurrentStart = previousNode[segmentStart][k] === undefined; if (noSegmentationOfLenghtKEndsAtCurrentStart) continue; for (var segmentEnd = segmentStart + 1; segmentEnd < values.length; segmentEnd++) { var costOfOptimalSegmentationOfLengthK = costOfOptimalSegmentationThatEndAtCurrentStart[k]; var costOfCurrentSegment = costMatrix.costBetween(segmentStart, segmentEnd); var totalCost = costOfOptimalSegmentationOfLengthK + costOfCurrentSegment; if (previousNode[segmentEnd][k + 1] === undefined || totalCost < cost[segmentEnd][k + 1]) { cost[segmentEnd][k + 1] = totalCost; previousNode[segmentEnd][k + 1] = segmentStart; } } } } } function findOptimalSegmentation(values, costMatrix, segmentCount) { var cost = allocateCostUpperTriangularForSegmentation(values, segmentCount); var previousNode = allocatePreviousNodeForSegmentation(values, segmentCount); findOptimalSegmentationInternal(cost, previousNode, values, costMatrix, segmentCount); if (Statistics.debuggingSegmentation) { console.log('findOptimalSegmentation with', segmentCount, 'segments'); for (var end = 0; end < values.length; end++) { for (var k = 0; k <= segmentCount; k++) { var start = previousNode[end][k]; if (start === undefined) continue; console.log(`C(segment=[${start}, ${end + 1}], segmentCount=${k})=${cost[end][k]}`); } } } var segmentEnd = values.length - 1; var segmentation = new Array(segmentCount + 1); segmentation[segmentCount] = values.length; for (var k = segmentCount; k > 0; k--) { segmentEnd = previousNode[segmentEnd][k]; segmentation[k - 1] = segmentEnd; } var costOfOptimalSegmentation = cost[values.length - 1][segmentCount]; if (Statistics.debuggingSegmentation) console.log('Optimal segmentation:', segmentation, 'with cost =', costOfOptimalSegmentation); return {segmentation: segmentation, cost: costOfOptimalSegmentation}; } function SampleVarianceUpperTriangularMatrix(values) { // The cost of segment (i, j]. var costMatrix = new Array(values.length - 1); for (var i = 0; i < values.length - 1; i++) { var remainingValueCount = values.length - i - 1; costMatrix[i] = new Float32Array(remainingValueCount); var sum = values[i]; var squareSum = sum * sum; costMatrix[i][0] = 0; for (var j = i + 1; j < values.length; j++) { var currentValue = values[j]; sum += currentValue; squareSum += currentValue * currentValue; var sampleSize = j - i + 1; var stdev = Statistics.sampleStandardDeviation(sampleSize, sum, squareSum); costMatrix[i][j - i - 1] = stdev > 0 ? sampleSize * Math.log(stdev * stdev) : 0; } } this.costMatrix = costMatrix; } SampleVarianceUpperTriangularMatrix.prototype.costBetween = function(from, to) { if (from >= this.costMatrix.length || from == to) return 0; // The cost of the segment that starts at the last data point is 0. return this.costMatrix[from][to - from - 1]; } })(); if (typeof module != 'undefined') module.exports = Statistics; class AsyncTask { constructor(method, args) { this._method = method; this._args = args; } execute() { if (!(this._method in Statistics)) throw `${this._method} is not a valid method of Statistics`; AsyncTask._asyncMessageId++; var startTime = Date.now(); var method = this._method; var args = this._args; return new Promise(function (resolve, reject) { AsyncTaskWorker.waitForAvailableWorker(function (worker) { worker.sendTask({id: AsyncTask._asyncMessageId, method: method, args: args}).then(function (data) { var startLatency = data.workerStartTime - startTime; var totalTime = Date.now() - startTime; var callback = data.status == 'resolve' ? resolve : reject; callback({result: data.result, workerId: worker.id(), startLatency: startLatency, totalTime: totalTime, workerTime: data.workerTime}); }); }); }); } static isAvailable() { return typeof Worker !== 'undefined'; } } AsyncTask._asyncMessageId = 0; class AsyncTaskWorker { // Takes a callback instead of returning a promise because a worker can become unavailable before the end of the current microtask. static waitForAvailableWorker(callback) { var worker = this._makeWorkerEventuallyAvailable(); if (worker) callback(worker); this._queue.push(callback); } static _makeWorkerEventuallyAvailable() { var worker = this._findAvailableWorker(); if (worker) return worker; var canStartMoreWorker = this._workerSet.size < this._maxWorkerCount; if (!canStartMoreWorker) return null; if (this._latestStartTime > Date.now() - 50) { setTimeout(function () { var worker = AsyncTaskWorker._findAvailableWorker(); if (worker) AsyncTaskWorker._queue.pop()(worker); }, 50); return null; } return new AsyncTaskWorker; } static _findAvailableWorker() { for (var worker of this._workerSet) { if (!worker._currentTaskId) return worker; } return null; } constructor() { this._webWorker = new Worker('async-task.js'); this._webWorker.onmessage = this._didRecieveMessage.bind(this); this._id = AsyncTaskWorker._workerId; this._startTime = Date.now(); this._currentTaskId = null; this._callback = null; AsyncTaskWorker._latestStartTime = this._startTime; AsyncTaskWorker._workerId++; AsyncTaskWorker._workerSet.add(this); } id() { return this._id; } sendTask(task) { console.assert(!this._currentTaskId); console.assert(task.id); var self = this; this._currentTaskId = task.id; return new Promise(function (resolve) { self._webWorker.postMessage(task); self._callback = resolve; }); } _didRecieveMessage(event) { var callback = this._callback; console.assert(this._currentTaskId); this._currentTaskId = null; this._callback = null; if (AsyncTaskWorker._queue.length) AsyncTaskWorker._queue.pop()(this); else { var self = this; setTimeout(function () { if (self._currentTaskId == null) AsyncTaskWorker._workerSet.delete(self); }, 1000); } callback(event.data); } static workerDidRecieveMessage(event) { var data = event.data; var id = data.id; var method = Statistics[data.method]; var startTime = Date.now(); try { var returnValue = method.apply(Statistics, data.args); postMessage({'id': id, 'status': 'resolve', 'result': returnValue, 'workerStartTime': startTime, 'workerTime': Date.now() - startTime}); } catch (error) { postMessage({'id': id, 'status': 'reject', 'result': error.toString(), 'workerStartTime': startTime, 'workerTime': Date.now() - startTime}); throw error; } } } AsyncTaskWorker._maxWorkerCount = 4; AsyncTaskWorker._workerSet = new Set; AsyncTaskWorker._queue = []; AsyncTaskWorker._workerId = 1; AsyncTaskWorker._latestStartTime = 0; if (typeof module == 'undefined' && typeof window == 'undefined' && typeof importScripts != 'undefined') { // Inside a worker //importScripts('/shared/statistics.js'); onmessage = AsyncTaskWorker.workerDidRecieveMessage.bind(AsyncTaskWorker); } if (typeof module != 'undefined') module.exports.AsyncTask = AsyncTask;