static int JS_dtoa()

in rhino/src/main/java/org/mozilla/javascript/DToA.java [418:1043]


    static int JS_dtoa(
            double d, int mode, boolean biasUp, int ndigits, boolean[] sign, StringBuilder buf) {
        /*  Arguments ndigits, decpt, sign are similar to those
            of ecvt and fcvt; trailing zeros are suppressed from
            the returned string.  If not null, *rve is set to point
            to the end of the return value.  If d is +-Infinity or NaN,
            then *decpt is set to 9999.

            mode:
            0 ==> shortest string that yields d when read in
            and rounded to nearest.
            1 ==> like 0, but with Steele & White stopping rule;
            e.g. with IEEE P754 arithmetic , mode 0 gives
            1e23 whereas mode 1 gives 9.999999999999999e22.
            2 ==> max(1,ndigits) significant digits.  This gives a
            return value similar to that of ecvt, except
            that trailing zeros are suppressed.
            3 ==> through ndigits past the decimal point.  This
            gives a return value similar to that from fcvt,
            except that trailing zeros are suppressed, and
            ndigits can be negative.
            4-9 should give the same return values as 2-3, i.e.,
            4 <= mode <= 9 ==> same return as mode
            2 + (mode & 1).  These modes are mainly for
            debugging; often they run slower but sometimes
            faster than modes 2-3.
            4,5,8,9 ==> left-to-right digit generation.
            6-9 ==> don't try fast floating-point estimate
            (if applicable).

            Values of mode other than 0-9 are treated as mode 0.

            Sufficient space is allocated to the return value
            to hold the suppressed trailing zeros.
        */

        int b2, b5, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, m2, m5, s2, s5;
        char dig;
        long L;
        long x;
        BigInteger b, b1, delta, mlo, mhi, S;
        int[] be = new int[1];
        int[] bbits = new int[1];
        double d2, ds, eps;
        boolean spec_case, denorm, k_check, try_quick, leftright;

        if ((word0(d) & Sign_bit) != 0) {
            /* set sign for everything, including 0's and NaNs */
            sign[0] = true;
            // word0(d) &= ~Sign_bit;  /* clear sign bit */
            d = setWord0(d, word0(d) & ~Sign_bit);
        } else sign[0] = false;

        if ((word0(d) & Exp_mask) == Exp_mask) {
            /* Infinity or NaN */
            buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN");
            return 9999;
        }
        if (d == 0) {
            //          no_digits:
            buf.setLength(0);
            buf.append('0'); /* copy "0" to buffer */
            return 1;
        }

        b = d2b(d, be, bbits);
        if ((i = (word0(d) >>> Exp_shift1 & (Exp_mask >> Exp_shift1))) != 0) {
            d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11);
            /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
             * log10(x)  =  log(x) / log(10)
             *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
             * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
             *
             * This suggests computing an approximation k to log10(d) by
             *
             * k = (i - Bias)*0.301029995663981
             *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
             *
             * We want k to be too large rather than too small.
             * The error in the first-order Taylor series approximation
             * is in our favor, so we just round up the constant enough
             * to compensate for any error in the multiplication of
             * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
             * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
             * adding 1e-13 to the constant term more than suffices.
             * Hence we adjust the constant term to 0.1760912590558.
             * (We could get a more accurate k by invoking log10,
             *  but this is probably not worthwhile.)
             */
            i -= Bias;
            denorm = false;
        } else {
            /* d is denormalized */
            i = bbits[0] + be[0] + (Bias + (P - 1) - 1);
            x =
                    (i > 32)
                            ? ((long) word0(d)) << (64 - i) | word1(d) >>> (i - 32)
                            : ((long) word1(d)) << (32 - i);
            //            d2 = x;
            //            word0(d2) -= 31*Exp_msk1; /* adjust exponent */
            d2 = setWord0((double) x, word0((double) x) - 31 * Exp_msk1);
            i -= (Bias + (P - 1) - 1) + 1;
            denorm = true;
        }
        /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */
        ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
        k = (int) ds;
        if (ds < 0.0 && ds != k) k--; /* want k = floor(ds) */
        k_check = true;
        if (k >= 0 && k <= Ten_pmax) {
            if (d < tens[k]) k--;
            k_check = false;
        }
        /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
        If k_check is zero, we're guaranteed that k = floor(log10(d)). */
        j = bbits[0] - i - 1;
        /* At this point d = b/2^j, where b is an odd integer. */
        if (j >= 0) {
            b2 = 0;
            s2 = j;
        } else {
            b2 = -j;
            s2 = 0;
        }
        if (k >= 0) {
            b5 = 0;
            s5 = k;
            s2 += k;
        } else {
            b2 -= k;
            b5 = -k;
            s5 = 0;
        }
        /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
        b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
        if (mode < 0 || mode > 9) mode = 0;
        try_quick = true;
        if (mode > 5) {
            mode -= 4;
            try_quick = false;
        }
        leftright = true;
        ilim = ilim1 = 0;
        switch (mode) {
            case 0:
            case 1:
                ilim = ilim1 = -1;
                i = 18;
                ndigits = 0;
                break;
            case 2:
                leftright = false;
            /* fall through */
            case 4:
                if (ndigits <= 0) ndigits = 1;
                ilim = ilim1 = i = ndigits;
                break;
            case 3:
                leftright = false;
            /* fall through */
            case 5:
                i = ndigits + k + 1;
                ilim = i;
                ilim1 = i - 1;
                if (i <= 0) i = 1;
        }
        /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
        /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
        when it turns out that k was computed too high by one. */

        boolean fast_failed = false;
        if (ilim >= 0 && ilim <= Quick_max && try_quick) {

            /* Try to get by with floating-point arithmetic. */

            i = 0;
            d2 = d;
            k0 = k;
            ilim0 = ilim;
            ieps = 2; /* conservative */
            /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
            if (k > 0) {
                ds = tens[k & 0xf];
                j = k >> 4;
                if ((j & Bletch) != 0) {
                    /* prevent overflows */
                    j &= Bletch - 1;
                    d /= bigtens[n_bigtens - 1];
                    ieps++;
                }
                for (; (j != 0); j >>= 1, i++)
                    if ((j & 1) != 0) {
                        ieps++;
                        ds *= bigtens[i];
                    }
                d /= ds;
            } else if ((j1 = -k) != 0) {
                d *= tens[j1 & 0xf];
                for (j = j1 >> 4; (j != 0); j >>= 1, i++)
                    if ((j & 1) != 0) {
                        ieps++;
                        d *= bigtens[i];
                    }
            }
            /* Check that k was computed correctly. */
            if (k_check && d < 1.0 && ilim > 0) {
                if (ilim1 <= 0) fast_failed = true;
                else {
                    ilim = ilim1;
                    k--;
                    d *= 10.;
                    ieps++;
                }
            }
            /* eps bounds the cumulative error. */
            //            eps = ieps*d + 7.0;
            //            word0(eps) -= (P-1)*Exp_msk1;
            eps = ieps * d + 7.0;
            eps = setWord0(eps, word0(eps) - (P - 1) * Exp_msk1);
            if (ilim == 0) {
                S = mhi = null;
                d -= 5.0;
                if (d > eps) {
                    buf.append('1');
                    k++;
                    return k + 1;
                }
                if (d < -eps) {
                    buf.setLength(0);
                    buf.append('0'); /* copy "0" to buffer */
                    return 1;
                }
                fast_failed = true;
            }
            if (!fast_failed) {
                fast_failed = true;
                if (leftright) {
                    /* Use Steele & White method of only
                     * generating digits needed.
                     */
                    eps = 0.5 / tens[ilim - 1] - eps;
                    for (i = 0; ; ) {
                        L = (long) d;
                        d -= L;
                        buf.append((char) ('0' + L));
                        if (d < eps) {
                            return k + 1;
                        }
                        if (1.0 - d < eps) {
                            //                            goto bump_up;
                            char lastCh;
                            while (true) {
                                lastCh = buf.charAt(buf.length() - 1);
                                buf.setLength(buf.length() - 1);
                                if (lastCh != '9') break;
                                if (buf.length() == 0) {
                                    k++;
                                    lastCh = '0';
                                    break;
                                }
                            }
                            buf.append((char) (lastCh + 1));
                            return k + 1;
                        }
                        if (++i >= ilim) break;
                        eps *= 10.0;
                        d *= 10.0;
                    }
                } else {
                    /* Generate ilim digits, then fix them up. */
                    eps *= tens[ilim - 1];
                    for (i = 1; ; i++, d *= 10.0) {
                        L = (long) d;
                        d -= L;
                        buf.append((char) ('0' + L));
                        if (i == ilim) {
                            if (d > 0.5 + eps) {
                                //                                goto bump_up;
                                char lastCh;
                                while (true) {
                                    lastCh = buf.charAt(buf.length() - 1);
                                    buf.setLength(buf.length() - 1);
                                    if (lastCh != '9') break;
                                    if (buf.length() == 0) {
                                        k++;
                                        lastCh = '0';
                                        break;
                                    }
                                }
                                buf.append((char) (lastCh + 1));
                                return k + 1;
                            } else if (d < 0.5 - eps) {
                                stripTrailingZeroes(buf);
                                //                                    while(*--s == '0') ;
                                //                                    s++;
                                return k + 1;
                            }
                            break;
                        }
                    }
                }
            }
            if (fast_failed) {
                buf.setLength(0);
                d = d2;
                k = k0;
                ilim = ilim0;
            }
        }

        /* Do we have a "small" integer? */

        if (be[0] >= 0 && k <= Int_max) {
            /* Yes. */
            ds = tens[k];
            if (ndigits < 0 && ilim <= 0) {
                S = mhi = null;
                if (ilim < 0 || d < 5 * ds || (!biasUp && d == 5 * ds)) {
                    buf.setLength(0);
                    buf.append('0'); /* copy "0" to buffer */
                    return 1;
                }
                buf.append('1');
                k++;
                return k + 1;
            }
            for (i = 1; ; i++) {
                L = (long) (d / ds);
                d -= L * ds;
                buf.append((char) ('0' + L));
                if (i == ilim) {
                    d += d;
                    if ((d > ds) || (d == ds && (((L & 1) != 0) || biasUp))) {
                        //                    bump_up:
                        //                        while(*--s == '9')
                        //                            if (s == buf) {
                        //                                k++;
                        //                                *s = '0';
                        //                                break;
                        //                            }
                        //                        ++*s++;
                        char lastCh;
                        while (true) {
                            lastCh = buf.charAt(buf.length() - 1);
                            buf.setLength(buf.length() - 1);
                            if (lastCh != '9') break;
                            if (buf.length() == 0) {
                                k++;
                                lastCh = '0';
                                break;
                            }
                        }
                        buf.append((char) (lastCh + 1));
                    }
                    break;
                }
                d *= 10.0;
                if (d == 0) break;
            }
            return k + 1;
        }

        m2 = b2;
        m5 = b5;
        mhi = mlo = null;
        if (leftright) {
            if (mode < 2) {
                i = denorm ? be[0] + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits[0];
                /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
                (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
            } else {
                j = ilim - 1;
                if (m5 >= j) m5 -= j;
                else {
                    s5 += j -= m5;
                    b5 += j;
                    m5 = 0;
                }
                if ((i = ilim) < 0) {
                    m2 -= i;
                    i = 0;
                }
                /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
            }
            b2 += i;
            s2 += i;
            mhi = BigInteger.valueOf(1);
            /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
            input (when mode < 2) significant digit, divided by 10^k. */
        }
        /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5).  Reduce common factors in
        b2, m2, and s2 without changing the equalities. */
        if (m2 > 0 && s2 > 0) {
            i = (m2 < s2) ? m2 : s2;
            b2 -= i;
            m2 -= i;
            s2 -= i;
        }

        /* Fold b5 into b and m5 into mhi. */
        if (b5 > 0) {
            if (leftright) {
                if (m5 > 0) {
                    mhi = pow5mult(mhi, m5);
                    b1 = mhi.multiply(b);
                    b = b1;
                }
                if ((j = b5 - m5) != 0) b = pow5mult(b, j);
            } else b = pow5mult(b, b5);
        }
        /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
        (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */

        S = BigInteger.valueOf(1);
        if (s5 > 0) S = pow5mult(S, s5);
        /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
        (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */

        /* Check for special case that d is a normalized power of 2. */
        spec_case = false;
        if (mode < 2) {
            if ((word1(d) == 0)
                    && ((word0(d) & Bndry_mask) == 0)
                    && ((word0(d) & (Exp_mask & Exp_mask << 1)) != 0)) {
                /* The special case.  Here we want to be within a quarter of the last input
                significant digit instead of one half of it when the decimal output string's value is less than d.  */
                b2 += Log2P;
                s2 += Log2P;
                spec_case = true;
            }
        }

        /* Arrange for convenient computation of quotients:
         * shift left if necessary so divisor has 4 leading 0 bits.
         *
         * Perhaps we should just compute leading 28 bits of S once
         * and for all and pass them and a shift to quorem, so it
         * can do shifts and ors to compute the numerator for q.
         */
        byte[] S_bytes = S.toByteArray();
        int S_hiWord = 0;
        for (int idx = 0; idx < 4; idx++) {
            S_hiWord = (S_hiWord << 8);
            if (idx < S_bytes.length) S_hiWord |= (S_bytes[idx] & 0xFF);
        }
        if ((i = (((s5 != 0) ? 32 - hi0bits(S_hiWord) : 1) + s2) & 0x1f) != 0) i = 32 - i;
        /* i is the number of leading zero bits in the most significant word of S*2^s2. */
        if (i > 4) {
            i -= 4;
            b2 += i;
            m2 += i;
            s2 += i;
        } else if (i < 4) {
            i += 28;
            b2 += i;
            m2 += i;
            s2 += i;
        }
        /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
        if (b2 > 0) b = b.shiftLeft(b2);
        if (s2 > 0) S = S.shiftLeft(s2);
        /* Now we have d/10^k = b/S and
        (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
        if (k_check) {
            if (b.compareTo(S) < 0) {
                k--;
                b = b.multiply(BigInteger.valueOf(10)); /* we botched the k estimate */
                if (leftright) mhi = mhi.multiply(BigInteger.valueOf(10));
                ilim = ilim1;
            }
        }
        /* At this point 1 <= d/10^k = b/S < 10. */

        if (ilim <= 0 && mode > 2) {
            /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
            Output either zero or the minimum nonzero output depending on which is closer to d. */
            if ((ilim < 0)
                    || ((i = b.compareTo(S = S.multiply(BigInteger.valueOf(5)))) < 0)
                    || (i == 0 && !biasUp)) {
                /* Always emit at least one digit.  If the number appears to be zero
                using the current mode, then emit one '0' digit and set decpt to 1. */
                /*no_digits:
                k = -1 - ndigits;
                goto ret; */
                buf.setLength(0);
                buf.append('0'); /* copy "0" to buffer */
                return 1;
                //                goto no_digits;
            }
            //        one_digit:
            buf.append('1');
            k++;
            return k + 1;
        }
        if (leftright) {
            if (m2 > 0) mhi = mhi.shiftLeft(m2);

            /* Compute mlo -- check for special case
             * that d is a normalized power of 2.
             */

            mlo = mhi;
            if (spec_case) {
                mhi = mlo;
                mhi = mhi.shiftLeft(Log2P);
            }
            /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
            /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */

            for (i = 1; ; i++) {
                BigInteger[] divResult = b.divideAndRemainder(S);
                b = divResult[1];
                dig = (char) (divResult[0].intValue() + '0');
                /* Do we yet have the shortest decimal string
                 * that will round to d?
                 */
                j = b.compareTo(mlo);
                /* j is b/S compared with mlo/S. */
                delta = S.subtract(mhi);
                j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta);
                /* j1 is b/S compared with 1 - mhi/S. */
                if ((j1 == 0) && (mode == 0) && ((word1(d) & 1) == 0)) {
                    if (dig == '9') {
                        buf.append('9');
                        if (roundOff(buf)) {
                            k++;
                            buf.append('1');
                        }
                        return k + 1;
                        //                        goto round_9_up;
                    }
                    if (j > 0) dig++;
                    buf.append(dig);
                    return k + 1;
                }
                if ((j < 0) || ((j == 0) && (mode == 0) && ((word1(d) & 1) == 0))) {
                    if (j1 > 0) {
                        /* Either dig or dig+1 would work here as the least significant decimal digit.
                        Use whichever would produce a decimal value closer to d. */
                        b = b.shiftLeft(1);
                        j1 = b.compareTo(S);
                        if (((j1 > 0) || (j1 == 0 && (((dig & 1) == 1) || biasUp)))
                                && (dig++ == '9')) {
                            buf.append('9');
                            if (roundOff(buf)) {
                                k++;
                                buf.append('1');
                            }
                            return k + 1;
                            //                                goto round_9_up;
                        }
                    }
                    buf.append(dig);
                    return k + 1;
                }
                if (j1 > 0) {
                    if (dig == '9') {
                        /* possible if i == 1 */
                        //                    round_9_up:
                        //                        *s++ = '9';
                        //                        goto roundoff;
                        buf.append('9');
                        if (roundOff(buf)) {
                            k++;
                            buf.append('1');
                        }
                        return k + 1;
                    }
                    buf.append((char) (dig + 1));
                    return k + 1;
                }
                buf.append(dig);
                if (i == ilim) break;
                b = b.multiply(BigInteger.valueOf(10));
                if (Objects.equals(mlo, mhi)) mlo = mhi = mhi.multiply(BigInteger.valueOf(10));
                else {
                    mlo = mlo.multiply(BigInteger.valueOf(10));
                    mhi = mhi.multiply(BigInteger.valueOf(10));
                }
            }
        } else
            for (i = 1; ; i++) {
                //                (char)(dig = quorem(b,S) + '0');
                BigInteger[] divResult = b.divideAndRemainder(S);
                b = divResult[1];
                dig = (char) (divResult[0].intValue() + '0');
                buf.append(dig);
                if (i >= ilim) break;
                b = b.multiply(BigInteger.valueOf(10));
            }

        /* Round off last digit */

        b = b.shiftLeft(1);
        j = b.compareTo(S);
        if ((j > 0) || (j == 0 && (((dig & 1) == 1) || biasUp))) {
            //        roundoff:
            //            while(*--s == '9')
            //                if (s == buf) {
            //                    k++;
            //                    *s++ = '1';
            //                    goto ret;
            //                }
            //            ++*s++;
            if (roundOff(buf)) {
                k++;
                buf.append('1');
                return k + 1;
            }
        } else {
            stripTrailingZeroes(buf);
            //            while(*--s == '0') ;
            //            s++;
        }
        //      ret:
        //        Bfree(S);
        //        if (mhi) {
        //            if (mlo && mlo != mhi)
        //                Bfree(mlo);
        //            Bfree(mhi);
        //        }
        //      ret1:
        //        Bfree(b);
        //        JS_ASSERT(s < buf + bufsize);
        return k + 1;
    }