in src/jobs/tune_bart.py [0:0]
def train(self):
torch.cuda.empty_cache()
# Ensure W&B logs the model at the end of training
os.environ["WANDB_LOG_MODEL"] = "end"
# Initialize W&B run
wandb.init(
project="tab_grouping",
config={
"learning_rate": self.learning_rate,
"batch_size": self.batch_size,
"model_name": self.model_name,
"label_column": self.label_column,
"use_keywords": self.use_keywords,
"learning_rate_decay": self.learning_rate_decay,
"single_tab_handling": self.single_tab_handling,
"input_prompt_id": INPUT_PROMPT_ID,
"filename": self.filename
}
)
print(f"W&B Run ID: {wandb.run.id}")
print(f"W&B Run Name: {wandb.run.name}")
tokenized_training_dataset = self.train_dataset.map(self.preprocess_function, batched=True)
tokenized_eval_dataset = self.eval_dataset.map(self.preprocess_function, batched=True)
if self.learning_rate_decay:
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=self.learning_rate,
per_device_train_batch_size=self.batch_size,
per_device_eval_batch_size=1,
num_train_epochs=3,
weight_decay=0.01,
save_total_limit=1,
save_strategy="epoch",
lr_scheduler_type="cosine",
warmup_ratio=0.1
)
else:
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=self.learning_rate,
per_device_train_batch_size=self.batch_size,
per_device_eval_batch_size=1,
num_train_epochs=3,
weight_decay=0.01,
save_total_limit=1,
save_strategy="epoch",
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_training_dataset,
eval_dataset=tokenized_eval_dataset
)
trainer.train()
# Generate predictions on the evaluation set
results_labels = []
results_output = []
for item in tokenized_eval_dataset:
input_ids = self.tokenizer(
item["input_text"],
return_tensors="pt"
).input_ids.to(self.model.device)
label = item["target_text"]
outputs = self.model.generate(
input_ids,
max_length=30,
num_return_sequences=1
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
results_output.append(response)
results_labels.append(label)
self.compute_metrics_text(results_output, results_labels)
# Log sample predictions in a W&B Table
validation_table = wandb.Table(
columns=["input", "label", "prediction"],
data=list(
zip(
[d["input_text"] for d in tokenized_eval_dataset],
results_labels,
results_output
)
),
)
wandb.log({"Validation Data": validation_table})
self.model.config.bad_words_ids = get_bad_word_ids()
output_dir = "./bart-finetuned-topic"
self.model.save_pretrained(output_dir)
self.tokenizer.save_pretrained(output_dir)
current_date = datetime.now()
date_string = current_date.isoformat().replace(":", "_")
upload_directory(
output_dir,
"stage-fx-tab-grouping",
f"topic/models/{date_string}/",
depth=1
)
wandb.finish()
self.model = None
torch.cuda.empty_cache()