in src/jobs/tune_gpt2.py [0:0]
def train(self):
torch.cuda.empty_cache()
os.environ["WANDB_LOG_MODEL"] = "end" # save the model to WandB
wandb.init(project="tab_grouping",
config={"learning_rate": self.learning_rate, "batch_size": self.batch_size,
"model_name": self.model_name,
"label_column": self.label_column,
"use_keywords": self.use_keywords,
"learning_rate_decay": self.learning_rate_decay,
"single_tab_handling": self.single_tab_handling,
"input_prompt_id": INPUT_PROMPT_ID, "filename": self.filename})
print(f"W&B Run ID: {wandb.run.id}")
print(f"W&B Run Name: {wandb.run.name}")
tokenized_training_dataset = self.train_dataset.map(self.preprocess_function, batched=True)
tokenized_eval_dataset = self.eval_dataset.map(self.preprocess_function, batched=True)
if self.learning_rate_decay:
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=self.learning_rate,
per_device_train_batch_size=self.batch_size,
per_device_eval_batch_size=1,
num_train_epochs=3,
weight_decay=0.01,
save_total_limit=1,
save_strategy="epoch",
lr_scheduler_type="cosine",
warmup_ratio=0.1
)
else:
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=self.learning_rate,
per_device_train_batch_size=self.batch_size,
per_device_eval_batch_size=1,
num_train_epochs=3,
weight_decay=0.01,
save_total_limit=1,
save_strategy="epoch",
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_training_dataset,
eval_dataset=tokenized_training_dataset,
tokenizer=self.tokenizer
)
trainer.train()
results_labels = []
results_output = []
for item in tokenized_eval_dataset:
input_ids = self.tokenizer(f"{item['input_text']} {self.break_string}", return_tensors="pt", max_length=512, return_attention_mask=True).input_ids.to("cuda:0")
label = item['target_text']
outputs = self.model.generate(input_ids, max_new_tokens=30, num_return_sequences=1)
# Remove the input prompt to get only the generated text
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
prompt_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
response = response[len(prompt_text):].strip()
results_output.append(response)
results_labels.append(label)
self.compute_metrics_text(results_output, results_labels)
validation_table = wandb.Table(
columns=["input", "label", "prediction"],
data=list(
zip(
[d["input_text"] for d in tokenized_eval_dataset],
results_labels,
results_output
)
),
)
wandb.log({"Validation Set": validation_table})
self.model.generation_config.update(bad_words_ids=get_bad_word_ids())
self.model.save_pretrained("./gpt2-finetuned-topic")
self.tokenizer.save_pretrained("./gpt2-finetuned-topic")
current_date = datetime.now()
date_string = current_date.isoformat().replace(":", "_")
upload_directory("./gpt2-finetuned-topic", "stage-fx-tab-grouping", f"topic/models/{date_string}/", depth=1)
wandb.finish()
self.model = None
torch.cuda.empty_cache()