notebooks/AnalyzeTrainingData.ipynb (195 lines of code) (raw):

{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "a450e000-91f7-4a0c-a3b8-c13d449f17fe", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "6f310eb2-14db-47a8-a8a6-e2353d570c28", "metadata": {}, "source": [ "### This code clusters the training data so some of it can be re-labeled and use in a multi-shot training flow" ] }, { "cell_type": "code", "execution_count": null, "id": "b339b641-b4dd-4893-9c91-a3e3c59e1e59", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "id": "0067ab2a-96d3-4a50-97cb-a1c307a89a5f", "metadata": {}, "outputs": [], "source": [ "from sklearn.cluster import KMeans\n", "from bertopic import BERTopic" ] }, { "cell_type": "code", "execution_count": null, "id": "79626719-5913-457a-8b54-bef37cf36ff3", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"../data/external/common_crawl.csv\")" ] }, { "cell_type": "code", "execution_count": null, "id": "a5954814-a3d7-48b4-b822-bd71c0f53351", "metadata": {}, "outputs": [], "source": [ "cluster_model = KMeans(n_clusters=45)\n", "topic_model = BERTopic(hdbscan_model=cluster_model)" ] }, { "cell_type": "code", "execution_count": null, "id": "085f46fe-1ac6-4b47-9676-5145eff15ccd", "metadata": {}, "outputs": [], "source": [ "from dotenv import load_dotenv" ] }, { "cell_type": "code", "execution_count": null, "id": "21fefd42-5cdd-4cf0-af64-2698220ad638", "metadata": {}, "outputs": [], "source": [ "df= df.fillna(\"\")" ] }, { "cell_type": "code", "execution_count": null, "id": "e4e42a9a-eb00-40a6-9549-4fd480887a30", "metadata": {}, "outputs": [], "source": [ "df" ] }, { "cell_type": "code", "execution_count": null, "id": "707864dd-0418-4cc3-92bf-208c9b1b37ad", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "0f895d7e-2288-4d4c-8c26-023aaea667cc", "metadata": {}, "outputs": [], "source": [ "topics, probs = topic_model.fit_transform(df.title)" ] }, { "cell_type": "code", "execution_count": null, "id": "0ff70cdf-0de4-4605-96a5-0d273b4c6376", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "657cb274-524f-4cf0-9957-3d222b8bbe17", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ab3f9b77-9143-47cf-8c5d-bca997f81b9d", "metadata": {}, "outputs": [], "source": [ "len(pd.DataFrame({\"topics\": topics}).topics.unique())" ] }, { "cell_type": "code", "execution_count": null, "id": "3a749246-9a62-4c06-98a4-7cd36eccaed2", "metadata": {}, "outputs": [], "source": [ "[print(a) for a in topic_model.get_topic_info()[\"Name\"].to_list()]" ] }, { "cell_type": "code", "execution_count": null, "id": "494d20a4-d2e3-4d51-aee2-f5d9ae8db96e", "metadata": {}, "outputs": [], "source": [ "df[\"assigned_topic\"] = topics" ] }, { "cell_type": "code", "execution_count": null, "id": "8f263907-38f9-4e17-842f-a5943ced8777", "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"../test_data/topic_fine_tuning_data__01_05__grouped.csv\")" ] }, { "cell_type": "code", "execution_count": null, "id": "418c7c48-8d79-4bc5-a194-fa2c33d563fa", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }