in src/train_ner.py [0:0]
def __init__(self):
self.model = AutoModelForTokenClassification.from_pretrained(
NER_MODEL_CHECKPOINT,
num_labels=NER_NUM_LABELS,
id2label=NER_ID2LABEL,
label2id=NER_LABEL2ID
).to(device)
self.tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_CHECKPOINT)
# if self.tokenizer.pad_token is None:
# self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# self.model.resize_token_embeddings(len(self.tokenizer))
self.model = get_peft_model(self.model, self.peft_config).to(device)
self.model.print_trainable_parameters()