in evaluation_pipeline/evaluation.py [0:0]
def get_combined_texts_uniform_k(df, k):
# Identify retrieval columns and sort them numerically
retrieval_cols = sorted(
[col for col in df.columns if 'retrieval_' in col and '_combined_text' in col],
key=lambda x: int(x.split('_')[1])
)
# Extract relevant retrieval columns as a NumPy array
retrieval_matrix = df[retrieval_cols].to_numpy()
# Slice the matrix up to `k` columns for all rows
sliced_matrix = retrieval_matrix[:, :k]
# Convert to a list of lists
result = sliced_matrix.tolist()
return result