in evaluation_pipeline/retrieval.py [0:0]
def query_and_result(fe, query, db, model_name, threshold, k):
model_name_normalized = model_name.replace("/","_").replace("-","_").replace(".","_")
if model_name == 'nomic-ai/nomic-embed-text-v1.5':
query = 'search_query: ' + query
query_embedding = fe.get_embeddings([query])[0]
# using cosine distance
rows = db.execute(
f"""