def __init__()

in src/feature_extractor.py [0:0]


    def __init__(self, EMBEDDING_MODELS_DICT, model_name="Xenova/all-MiniLM-L6-v2"):
        print(f"selected model is {model_name}")
        model_url = EMBEDDING_MODELS_DICT.get(model_name)
        model_dir_path = "../models"
        model_path = f"{model_dir_path}/{model_name.replace('/','_')}"
        if not os.path.exists(model_dir_path):
            os.makedirs(model_dir_path)
        if not os.path.exists(model_path):
            print("Downloading ONNX model...")
            response = requests.get(model_url)
            with open(model_path, "wb") as f:
                f.write(response.content)
            print("ONNX model downloaded.")

        # Load the ONNX model
        self.ort_session = ort.InferenceSession(model_path)
        # Initialize tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)