def fit()

in trend_getter/holidays.py [0:0]


    def fit(self):
        for country in self.countries:
            self.holiday_dfs[country] = get_calendar(
                country=country,
                holiday_years=self.observed_years,
                exclude_paschal_cycle=self.calendar_exclude_paschal_cycle,
                split_concurrent_holidays=False,
            )

            self.dau_dfs[country] = detrend(
                df=self.df[self.df.country == country],
                holiday_df=self.holiday_dfs[country],
                threshold=self.detrend_threshold,
                max_radius=self.detrend_max_radius,
                min_radius=self.detrend_min_radius,
                spike_correction=self.detrend_spike_correction,
            )

            self.dau_dfs[country]["dau_28ma"] = moving_average(
                self.dau_dfs[country]["dau"]
            )
            self.dau_dfs[country]["edau_28ma"] = moving_average(
                self.dau_dfs[country]["expected"]
            )

            self.dau_dfs[country]["dau_yoy"] = year_over_year(
                self.dau_dfs[country], "dau_28ma"
            )
            self.dau_dfs[country]["edau_yoy"] = year_over_year(
                self.dau_dfs[country], "edau_28ma"
            )

        self.all_countries = (
            pd.concat(
                [
                    i[["submission_date", "dau", "expected", "dau_28ma", "edau_28ma"]]
                    for i in self.dau_dfs.values()
                ]
            )
            .groupby("submission_date", as_index=False)
            .sum(min_count=1)
        )
        self.all_countries["dau_yoy"] = year_over_year(self.all_countries, "dau_28ma")
        self.all_countries["edau_yoy"] = year_over_year(self.all_countries, "edau_28ma")

        self.holiday_impacts = estimate_impacts(
            dau_dfs=self.dau_dfs,
            holiday_dfs=self.holiday_dfs,
            last_observed_date=self.forecast_start,
        )

        self.future_impacts = None