in extra/icu/icu-release-73-1/source/i18n/regexcmp.cpp [346:1869]
UBool RegexCompile::doParseActions(int32_t action)
{
UBool returnVal = true;
switch ((Regex_PatternParseAction)action) {
case doPatStart:
// Start of pattern compiles to:
//0 SAVE 2 Fall back to position of FAIL
//1 jmp 3
//2 FAIL Stop if we ever reach here.
//3 NOP Dummy, so start of pattern looks the same as
// the start of an ( grouping.
//4 NOP Resreved, will be replaced by a save if there are
// OR | operators at the top level
appendOp(URX_STATE_SAVE, 2);
appendOp(URX_JMP, 3);
appendOp(URX_FAIL, 0);
// Standard open nonCapture paren action emits the two NOPs and
// sets up the paren stack frame.
doParseActions(doOpenNonCaptureParen);
break;
case doPatFinish:
// We've scanned to the end of the pattern
// The end of pattern compiles to:
// URX_END
// which will stop the runtime match engine.
// Encountering end of pattern also behaves like a close paren,
// and forces fixups of the State Save at the beginning of the compiled pattern
// and of any OR operations at the top level.
//
handleCloseParen();
if (fParenStack.size() > 0) {
// Missing close paren in pattern.
error(U_REGEX_MISMATCHED_PAREN);
}
// add the END operation to the compiled pattern.
appendOp(URX_END, 0);
// Terminate the pattern compilation state machine.
returnVal = false;
break;
case doOrOperator:
// Scanning a '|', as in (A|B)
{
// Generate code for any pending literals preceding the '|'
fixLiterals(false);
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
// side fails to match and backtracks. Locate the position for the
// save from the location on the top of the parentheses stack.
int32_t savePosition = fParenStack.popi();
int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
fRXPat->fCompiledPat->setElementAt(op, savePosition);
// Append an JMP operation into the compiled pattern. The operand for
// the JMP will eventually be the location following the ')' for the
// group. This will be patched in later, when the ')' is encountered.
appendOp(URX_JMP, 0);
// Push the position of the newly added JMP op onto the parentheses stack.
// This registers if for fixup when this block's close paren is encountered.
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
// Append a NOP to the compiled pattern. This is the slot reserved
// for a SAVE in the event that there is yet another '|' following
// this one.
appendOp(URX_NOP, 0);
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
}
break;
case doBeginNamedCapture:
// Scanning (?<letter.
// The first letter of the name will come through again under doConinueNamedCapture.
fCaptureName = new UnicodeString();
if (fCaptureName == nullptr) {
error(U_MEMORY_ALLOCATION_ERROR);
}
break;
case doContinueNamedCapture:
fCaptureName->append(fC.fChar);
break;
case doBadNamedCapture:
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
break;
case doOpenCaptureParen:
// Open Capturing Paren, possibly named.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - START_CAPTURE n where n is stack frame offset to the capture group variables.
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
//
// Each capture group gets three slots in the save stack frame:
// 0: Capture Group start position (in input string being matched.)
// 1: Capture Group end position.
// 2: Start of Match-in-progress.
// The first two locations are for a completed capture group, and are
// referred to by back references and the like.
// The third location stores the capture start position when an START_CAPTURE is
// encountered. This will be promoted to a completed capture when (and if) the corresponding
// END_CAPTURE is encountered.
{
fixLiterals();
appendOp(URX_NOP, 0);
int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame.
appendOp(URX_START_CAPTURE, varsLoc);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(capturing, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
// Save the mapping from group number to stack frame variable position.
fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
// If this is a named capture group, add the name->group number mapping.
if (fCaptureName != nullptr) {
if (!fRXPat->initNamedCaptureMap()) {
if (U_SUCCESS(*fStatus)) {
error(fRXPat->fDeferredStatus);
}
break;
}
int32_t groupNumber = fRXPat->fGroupMap->size();
int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
fCaptureName = nullptr; // hash table takes ownership of the name (key) string.
if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
}
}
}
break;
case doOpenNonCaptureParen:
// Open non-caputuring (grouping only) Paren.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the two NOPs.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(plain, *fStatus); // Begin a new frame.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
}
break;
case doOpenAtomicParen:
// Open Atomic Paren. (?>
// Compile to a
// - NOP, which later may be replaced if the parenthesized group
// has a quantifier, followed by
// - STO_SP save state stack position, so it can be restored at the ")"
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
appendOp(URX_NOP, 0);
int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr.
appendOp(URX_STO_SP, varLoc);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(atomic, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
}
break;
case doOpenLookAhead:
// Positive Look-ahead (?= stuff )
//
// Note: Addition of transparent input regions, with the need to
// restore the original regions when failing out of a lookahead
// block, complicated this sequence. Some combined opcodes
// might make sense - or might not, lookahead aren't that common.
//
// Caution: min match length optimization knows about this
// sequence; don't change without making updates there too.
//
// Compiles to
// 1 LA_START dataLoc Saves SP, Input Pos, Active input region.
// 2. STATE_SAVE 4 on failure of lookahead, goto 4
// 3 JMP 6 continue ...
//
// 4. LA_END Look Ahead failed. Restore regions.
// 5. BACKTRACK and back track again.
//
// 6. NOP reserved for use by quantifiers on the block.
// Look-ahead can't have quantifiers, but paren stack
// compile time conventions require the slot anyhow.
// 7. NOP may be replaced if there is are '|' ops in the block.
// 8. code for parenthesized stuff.
// 9. LA_END
//
// Four data slots are reserved, for saving state on entry to the look-around
// 0: stack pointer on entry.
// 1: input position on entry.
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
{
fixLiterals();
int32_t dataLoc = allocateData(4);
appendOp(URX_LA_START, dataLoc);
appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
appendOp(URX_LA_END, dataLoc);
appendOp(URX_BACKTRACK, 0);
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the NOPs.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookAhead, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
}
break;
case doOpenLookAheadNeg:
// Negated Lookahead. (?! stuff )
// Compiles to
// 1. LA_START dataloc
// 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
// // which continues with the match.
// 3. NOP // Std. Open Paren sequence, for possible '|'
// 4. code for parenthesized stuff.
// 5. LA_END // Cut back stack, remove saved state from step 2.
// 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
// 7. END_LA // Restore match region, in case look-ahead was using
// an alternate (transparent) region.
// Four data slots are reserved, for saving state on entry to the look-around
// 0: stack pointer on entry.
// 1: input position on entry.
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
{
fixLiterals();
int32_t dataLoc = allocateData(4);
appendOp(URX_LA_START, dataLoc);
appendOp(URX_STATE_SAVE, 0); // dest address will be patched later.
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the StateSave and NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(negLookAhead, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
// Instructions #5 - #7 will be added when the ')' is encountered.
}
break;
case doOpenLookBehind:
{
// Compile a (?<= look-behind open paren.
//
// Compiles to
// 0 URX_LB_START dataLoc
// 1 URX_LB_CONT dataLoc
// 2 MinMatchLen
// 3 MaxMatchLen
// 4 URX_NOP Standard '(' boilerplate.
// 5 URX_NOP Reserved slot for use with '|' ops within (block).
// 6 <code for LookBehind expression>
// 7 URX_LB_END dataLoc # Check match len, restore input len
// 8 URX_LA_END dataLoc # Restore stack, input pos
//
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
// 4: Start index of match current match attempt.
// The first four items must match the layout of data for LA_START / LA_END
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = allocateData(5);
// Emit URX_LB_START
appendOp(URX_LB_START, dataLoc);
// Emit URX_LB_CONT
appendOp(URX_LB_CONT, dataLoc);
appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
// Emit the NOPs
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehind, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
// The final two instructions will be added when the ')' is encountered.
}
break;
case doOpenLookBehindNeg:
{
// Compile a (?<! negated look-behind open paren.
//
// Compiles to
// 0 URX_LB_START dataLoc # Save entry stack, input len
// 1 URX_LBN_CONT dataLoc # Iterate possible match positions
// 2 MinMatchLen
// 3 MaxMatchLen
// 4 continueLoc (9)
// 5 URX_NOP Standard '(' boilerplate.
// 6 URX_NOP Reserved slot for use with '|' ops within (block).
// 7 <code for LookBehind expression>
// 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
// 9 ...
//
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
// 4: Start index of match current match attempt.
// The first four items must match the layout of data for LA_START / LA_END
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = allocateData(5);
// Emit URX_LB_START
appendOp(URX_LB_START, dataLoc);
// Emit URX_LBN_CONT
appendOp(URX_LBN_CONT, dataLoc);
appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later.
// Emit the NOPs
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehindN, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
// The final two instructions will be added when the ')' is encountered.
}
break;
case doConditionalExpr:
// Conditionals such as (?(1)a:b)
case doPerlInline:
// Perl inline-conditionals. (?{perl code}a|b) We're not perl, no way to do them.
error(U_REGEX_UNIMPLEMENTED);
break;
case doCloseParen:
handleCloseParen();
if (fParenStack.size() <= 0) {
// Extra close paren, or missing open paren.
error(U_REGEX_MISMATCHED_PAREN);
}
break;
case doNOP:
break;
case doBadOpenParenType:
case doRuleError:
error(U_REGEX_RULE_SYNTAX);
break;
case doMismatchedParenErr:
error(U_REGEX_MISMATCHED_PAREN);
break;
case doPlus:
// Normal '+' compiles to
// 1. stuff to be repeated (already built)
// 2. jmp-sav 1
// 3. ...
//
// Or, if the item to be repeated can match a zero length string,
// 1. STO_INP_LOC data-loc
// 2. body of stuff to be repeated
// 3. JMP_SAV_X 2
// 4. ...
//
// Or, if the item to be repeated is simple
// 1. Item to be repeated.
// 2. LOOP_SR_I set number (assuming repeated item is a set ref)
// 3. LOOP_C stack location
{
int32_t topLoc = blockTopLoc(false); // location of item #1
int32_t frameLoc;
// Check for simple constructs, which may get special optimized code.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
// Emit optimized code for [char set]+
appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
frameLoc = allocateStackData(1);
appendOp(URX_LOOP_C, frameLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .+ operations.
int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
// URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
loopOpI |= 1;
}
if (fModeFlags & UREGEX_UNIX_LINES) {
loopOpI |= 2;
}
appendOp(loopOpI);
frameLoc = allocateStackData(1);
appendOp(URX_LOOP_C, frameLoc);
break;
}
}
// General case.
// Check for minimum match length of zero, which requires
// extra loop-breaking code.
if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
// Zero length match is possible.
// Emit the code sequence that can handle it.
insertOp(topLoc);
frameLoc = allocateStackData(1);
int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
appendOp(URX_JMP_SAV_X, topLoc+1);
} else {
// Simpler code when the repeated body must match something non-empty
appendOp(URX_JMP_SAV, topLoc);
}
}
break;
case doNGPlus:
// Non-greedy '+?' compiles to
// 1. stuff to be repeated (already built)
// 2. state-save 1
// 3. ...
{
int32_t topLoc = blockTopLoc(false);
appendOp(URX_STATE_SAVE, topLoc);
}
break;
case doOpt:
// Normal (greedy) ? quantifier.
// Compiles to
// 1. state save 3
// 2. body of optional block
// 3. ...
// Insert the state save into the compiled pattern, and we're done.
{
int32_t saveStateLoc = blockTopLoc(true);
int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
}
break;
case doNGOpt:
// Non-greedy ?? quantifier
// compiles to
// 1. jmp 4
// 2. body of optional block
// 3 jmp 5
// 4. state save 2
// 5 ...
// This code is less than ideal, with two jmps instead of one, because we can only
// insert one instruction at the top of the block being iterated.
{
int32_t jmp1_loc = blockTopLoc(true);
int32_t jmp2_loc = fRXPat->fCompiledPat->size();
int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1);
fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
appendOp(URX_JMP, jmp2_loc+2);
appendOp(URX_STATE_SAVE, jmp1_loc+1);
}
break;
case doStar:
// Normal (greedy) * quantifier.
// Compiles to
// 1. STATE_SAVE 4
// 2. body of stuff being iterated over
// 3. JMP_SAV 2
// 4. ...
//
// Or, if the body is a simple [Set],
// 1. LOOP_SR_I set number
// 2. LOOP_C stack location
// ...
//
// Or if this is a .*
// 1. LOOP_DOT_I (. matches all mode flag)
// 2. LOOP_C stack location
//
// Or, if the body can match a zero-length string, to inhibit infinite loops,
// 1. STATE_SAVE 5
// 2. STO_INP_LOC data-loc
// 3. body of stuff
// 4. JMP_SAV_X 2
// 5. ...
{
// location of item #1, the STATE_SAVE
int32_t topLoc = blockTopLoc(false);
int32_t dataLoc = -1;
// Check for simple *, where the construct being repeated
// compiled to single opcode, and might be optimizable.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
// Emit optimized code for a [char set]*
int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
dataLoc = allocateStackData(1);
appendOp(URX_LOOP_C, dataLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .* operations.
int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
// URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
loopOpI |= 1;
}
if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
loopOpI |= 2;
}
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
dataLoc = allocateStackData(1);
appendOp(URX_LOOP_C, dataLoc);
break;
}
}
// Emit general case code for this *
// The optimizations did not apply.
int32_t saveStateLoc = blockTopLoc(true);
int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1);
// Check for minimum match length of zero, which requires
// extra loop-breaking code.
if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
insertOp(saveStateLoc);
dataLoc = allocateStackData(1);
int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
}
// Locate the position in the compiled pattern where the match will continue
// after completing the *. (4 or 5 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
// Put together the save state op and store it into the compiled code.
int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
// Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
appendOp(jmpOp);
}
break;
case doNGStar:
// Non-greedy *? quantifier
// compiles to
// 1. JMP 3
// 2. body of stuff being iterated over
// 3. STATE_SAVE 2
// 4 ...
{
int32_t jmpLoc = blockTopLoc(true); // loc 1.
int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
int32_t jmpOp = buildOp(URX_JMP, saveLoc);
fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
appendOp(URX_STATE_SAVE, jmpLoc+1);
}
break;
case doIntervalInit:
// The '{' opening an interval quantifier was just scanned.
// Init the counter variables that will accumulate the values as the digits
// are scanned.
fIntervalLow = 0;
fIntervalUpper = -1;
break;
case doIntevalLowerDigit:
// Scanned a digit from the lower value of an {lower,upper} interval
{
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
int64_t val = (int64_t)fIntervalLow*10 + digitValue;
if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
} else {
fIntervalLow = (int32_t)val;
}
}
break;
case doIntervalUpperDigit:
// Scanned a digit from the upper value of an {lower,upper} interval
{
if (fIntervalUpper < 0) {
fIntervalUpper = 0;
}
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
} else {
fIntervalUpper = (int32_t)val;
}
}
break;
case doIntervalSame:
// Scanned a single value interval like {27}. Upper = Lower.
fIntervalUpper = fIntervalLow;
break;
case doInterval:
// Finished scanning a normal {lower,upper} interval. Generate the code for it.
if (compileInlineInterval() == false) {
compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
}
break;
case doPossessiveInterval:
// Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
{
// Remember the loc for the top of the block being looped over.
// (Can not reserve a slot in the compiled pattern at this time, because
// compileInterval needs to reserve also, and blockTopLoc can only reserve
// once per block.)
int32_t topLoc = blockTopLoc(false);
// Produce normal looping code.
compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
// Surround the just-emitted normal looping code with a STO_SP ... LD_SP
// just as if the loop was inclosed in atomic parentheses.
// First the STO_SP before the start of the loop
insertOp(topLoc);
int32_t varLoc = allocateData(1); // Reserve a data location for saving the
int32_t op = buildOp(URX_STO_SP, varLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
loopOp++; // point LoopOp after the just-inserted STO_SP
fRXPat->fCompiledPat->push(loopOp, *fStatus);
// Then the LD_SP after the end of the loop
appendOp(URX_LD_SP, varLoc);
}
break;
case doNGInterval:
// Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
break;
case doIntervalError:
error(U_REGEX_BAD_INTERVAL);
break;
case doLiteralChar:
// We've just scanned a "normal" character from the pattern,
literalChar(fC.fChar);
break;
case doEscapedLiteralChar:
// We've just scanned an backslashed escaped character with no
// special meaning. It represents itself.
if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
(fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
literalChar(fC.fChar);
break;
case doDotAny:
// scanned a ".", match any single character.
{
fixLiterals(false);
if (fModeFlags & UREGEX_DOTALL) {
appendOp(URX_DOTANY_ALL, 0);
} else if (fModeFlags & UREGEX_UNIX_LINES) {
appendOp(URX_DOTANY_UNIX, 0);
} else {
appendOp(URX_DOTANY, 0);
}
}
break;
case doCaret:
{
fixLiterals(false);
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_CARET, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_CARET_M, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_CARET, 0); // Only testing true start of input.
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_CARET_M_UNIX, 0);
}
}
break;
case doDollar:
{
fixLiterals(false);
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_DOLLAR, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_DOLLAR_M, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_DOLLAR_D, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_DOLLAR_MD, 0);
}
}
break;
case doBackslashA:
fixLiterals(false);
appendOp(URX_CARET, 0);
break;
case doBackslashB:
{
#if UCONFIG_NO_BREAK_ITERATION==1
if (fModeFlags & UREGEX_UWORD) {
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(false);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
appendOp(op, 1);
}
break;
case doBackslashb:
{
#if UCONFIG_NO_BREAK_ITERATION==1
if (fModeFlags & UREGEX_UWORD) {
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(false);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
appendOp(op, 0);
}
break;
case doBackslashD:
fixLiterals(false);
appendOp(URX_BACKSLASH_D, 1);
break;
case doBackslashd:
fixLiterals(false);
appendOp(URX_BACKSLASH_D, 0);
break;
case doBackslashG:
fixLiterals(false);
appendOp(URX_BACKSLASH_G, 0);
break;
case doBackslashH:
fixLiterals(false);
appendOp(URX_BACKSLASH_H, 1);
break;
case doBackslashh:
fixLiterals(false);
appendOp(URX_BACKSLASH_H, 0);
break;
case doBackslashR:
fixLiterals(false);
appendOp(URX_BACKSLASH_R, 0);
break;
case doBackslashS:
fixLiterals(false);
appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
break;
case doBackslashs:
fixLiterals(false);
appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
break;
case doBackslashV:
fixLiterals(false);
appendOp(URX_BACKSLASH_V, 1);
break;
case doBackslashv:
fixLiterals(false);
appendOp(URX_BACKSLASH_V, 0);
break;
case doBackslashW:
fixLiterals(false);
appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
break;
case doBackslashw:
fixLiterals(false);
appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
break;
case doBackslashX:
#if UCONFIG_NO_BREAK_ITERATION==1
// Grapheme Cluster Boundary requires ICU break iteration.
error(U_UNSUPPORTED_ERROR);
#endif
fixLiterals(false);
appendOp(URX_BACKSLASH_X, 0);
break;
case doBackslashZ:
fixLiterals(false);
appendOp(URX_DOLLAR, 0);
break;
case doBackslashz:
fixLiterals(false);
appendOp(URX_BACKSLASH_Z, 0);
break;
case doEscapeError:
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
break;
case doExit:
fixLiterals(false);
returnVal = false;
break;
case doProperty:
{
fixLiterals(false);
UnicodeSet *theSet = scanProp();
compileSet(theSet);
}
break;
case doNamedChar:
{
UChar32 c = scanNamedChar();
literalChar(c);
}
break;
case doBackRef:
// BackReference. Somewhat unusual in that the front-end can not completely parse
// the regular expression, because the number of digits to be consumed
// depends on the number of capture groups that have been defined. So
// we have to do it here instead.
{
int32_t numCaptureGroups = fRXPat->fGroupMap->size();
int32_t groupNum = 0;
UChar32 c = fC.fChar;
for (;;) {
// Loop once per digit, for max allowed number of digits in a back reference.
int32_t digit = u_charDigitValue(c);
groupNum = groupNum * 10 + digit;
if (groupNum >= numCaptureGroups) {
break;
}
c = peekCharLL();
if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == false) {
break;
}
nextCharLL();
}
// Scan of the back reference in the source regexp is complete. Now generate
// the compiled code for it.
// Because capture groups can be forward-referenced by back-references,
// we fill the operand with the capture group number. At the end
// of compilation, it will be changed to the variable's location.
U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
// and shouldn't enter this code path at all.
fixLiterals(false);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
appendOp(URX_BACKREF_I, groupNum);
} else {
appendOp(URX_BACKREF, groupNum);
}
}
break;
case doBeginNamedBackRef:
U_ASSERT(fCaptureName == nullptr);
fCaptureName = new UnicodeString;
if (fCaptureName == nullptr) {
error(U_MEMORY_ALLOCATION_ERROR);
}
break;
case doContinueNamedBackRef:
fCaptureName->append(fC.fChar);
break;
case doCompleteNamedBackRef:
{
int32_t groupNumber =
fRXPat->fNamedCaptureMap ? uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName) : 0;
if (groupNumber == 0) {
// Group name has not been defined.
// Could be a forward reference. If we choose to support them at some
// future time, extra mechanism will be required at this point.
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
} else {
// Given the number, handle identically to a \n numbered back reference.
// See comments above, under doBackRef
fixLiterals(false);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
appendOp(URX_BACKREF_I, groupNumber);
} else {
appendOp(URX_BACKREF, groupNumber);
}
}
delete fCaptureName;
fCaptureName = nullptr;
break;
}
case doPossessivePlus:
// Possessive ++ quantifier.
// Compiles to
// 1. STO_SP
// 2. body of stuff being iterated over
// 3. STATE_SAVE 5
// 4. JMP 2
// 5. LD_SP
// 6. ...
//
// Note: TODO: This is pretty inefficient. A mass of saved state is built up
// then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
//
{
// Emit the STO_SP
int32_t topLoc = blockTopLoc(true);
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the STATE_SAVE
appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
// Emit the JMP
appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP
appendOp(URX_LD_SP, stoLoc);
}
break;
case doPossessiveStar:
// Possessive *+ quantifier.
// Compiles to
// 1. STO_SP loc
// 2. STATE_SAVE 5
// 3. body of stuff being iterated over
// 4. JMP 2
// 5. LD_SP loc
// 6 ...
// TODO: do something to cut back the state stack each time through the loop.
{
// Reserve two slots at the top of the block.
int32_t topLoc = blockTopLoc(true);
insertOp(topLoc);
// emit STO_SP loc
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE 5
int32_t L7 = fRXPat->fCompiledPat->size()+1;
op = buildOp(URX_STATE_SAVE, L7);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
// Append the JMP operation.
appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP loc
appendOp(URX_LD_SP, stoLoc);
}
break;
case doPossessiveOpt:
// Possessive ?+ quantifier.
// Compiles to
// 1. STO_SP loc
// 2. SAVE_STATE 5
// 3. body of optional block
// 4. LD_SP loc
// 5. ...
//
{
// Reserve two slots at the top of the block.
int32_t topLoc = blockTopLoc(true);
insertOp(topLoc);
// Emit the STO_SP
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
op = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
// Emit the LD_SP
appendOp(URX_LD_SP, stoLoc);
}
break;
case doBeginMatchMode:
fNewModeFlags = fModeFlags;
fSetModeFlag = true;
break;
case doMatchMode: // (?i) and similar
{
int32_t bit = 0;
switch (fC.fChar) {
case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
case 0x2d: /* '-' */ fSetModeFlag = false; break;
default:
UPRV_UNREACHABLE_EXIT; // Should never happen. Other chars are filtered out
// by the scanner.
}
if (fSetModeFlag) {
fNewModeFlags |= bit;
} else {
fNewModeFlags &= ~bit;
}
}
break;
case doSetMatchMode:
// Emit code to match any pending literals, using the not-yet changed match mode.
fixLiterals();
// We've got a (?i) or similar. The match mode is being changed, but
// the change is not scoped to a parenthesized block.
U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
break;
case doMatchModeParen:
// We've got a (?i: or similar. Begin a parenthesized block, save old
// mode flags so they can be restored at the close of the block.
//
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals(false);
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the positions
// of the two NOPs (a normal non-capturing () frame, except for the
// saving of the original mode flags.)
fParenStack.push(fModeFlags, *fStatus);
fParenStack.push(flags, *fStatus); // Frame Marker
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
// Set the current mode flags to the new values.
U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
}
break;
case doBadModeFlag:
error(U_REGEX_INVALID_FLAG);
break;
case doSuppressComments:
// We have just scanned a '(?'. We now need to prevent the character scanner from
// treating a '#' as a to-the-end-of-line comment.
// (This Perl compatibility just gets uglier and uglier to do...)
fEOLComments = false;
break;
case doSetAddAmp:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add(chAmp);
}
break;
case doSetAddDash:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add(chDash);
}
break;
case doSetBackslash_s:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
break;
}
case doSetBackslash_S:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet SSet;
SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]).complement();
set->addAll(SSet);
break;
}
case doSetBackslash_d:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
// TODO - make a static set, ticket 6058.
addCategory(set, U_GC_ND_MASK, *fStatus);
break;
}
case doSetBackslash_D:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet digits;
// TODO - make a static set, ticket 6058.
digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
digits.complement();
set->addAll(digits);
break;
}
case doSetBackslash_h:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet h;
h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
h.add((UChar32)9); // Tab
set->addAll(h);
break;
}
case doSetBackslash_H:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet h;
h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
h.add((UChar32)9); // Tab
h.complement();
set->addAll(h);
break;
}
case doSetBackslash_v:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add((UChar32)0x0a, (UChar32)0x0d); // add range
set->add((UChar32)0x85);
set->add((UChar32)0x2028, (UChar32)0x2029);
break;
}
case doSetBackslash_V:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet v;
v.add((UChar32)0x0a, (UChar32)0x0d); // add range
v.add((UChar32)0x85);
v.add((UChar32)0x2028, (UChar32)0x2029);
v.complement();
set->addAll(v);
break;
}
case doSetBackslash_w:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
break;
}
case doSetBackslash_W:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet SSet;
SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]).complement();
set->addAll(SSet);
break;
}
case doSetBegin:
{
fixLiterals(false);
LocalPointer<UnicodeSet> lpSet(new UnicodeSet(), *fStatus);
fSetStack.push(lpSet.orphan(), *fStatus);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
}
case doSetBeginDifference1:
// We have scanned something like [[abc]-[
// Set up a new UnicodeSet for the set beginning with the just-scanned '['
// Push a Difference operator, which will cause the new set to be subtracted from what
// went before once it is created.
setPushOp(setDifference1);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetBeginIntersection1:
// We have scanned something like [[abc]&[
// Need both the '&' operator and the open '[' operator.
setPushOp(setIntersection1);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetBeginUnion:
// We have scanned something like [[abc][
// Need to handle the union operation explicitly [[abc] | [
setPushOp(setUnion);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetDifference2:
// We have scanned something like [abc--
// Consider this to unambiguously be a set difference operator.
setPushOp(setDifference2);
break;
case doSetEnd:
// Have encountered the ']' that closes a set.
// Force the evaluation of any pending operations within this set,
// leave the completed set on the top of the set stack.
setEval(setEnd);
U_ASSERT(fSetOpStack.peeki()==setStart);
fSetOpStack.popi();
break;
case doSetFinish:
{
// Finished a complete set expression, including all nested sets.
// The close bracket has already triggered clearing out pending set operators,
// the operator stack should be empty and the operand stack should have just
// one entry, the result set.
U_ASSERT(fSetOpStack.empty());
UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
U_ASSERT(fSetStack.empty());
compileSet(theSet);
break;
}
case doSetIntersection2:
// Have scanned something like [abc&&
setPushOp(setIntersection2);
break;
case doSetLiteral:
// Union the just-scanned literal character into the set being built.
// This operation is the highest precedence set operation, so we can always do
// it immediately, without waiting to see what follows. It is necessary to perform
// any pending '-' or '&' operation first, because these have the same precedence
// as union-ing in a literal'
{
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fC.fChar);
fLastSetLiteral = fC.fChar;
break;
}
case doSetLiteralEscaped:
// A back-slash escaped literal character was encountered.
// Processing is the same as with setLiteral, above, with the addition of
// the optional check for errors on escaped ASCII letters.
{
if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
(fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fC.fChar);
fLastSetLiteral = fC.fChar;
break;
}
case doSetNamedChar:
// Scanning a \N{UNICODE CHARACTER NAME}
// Aside from the source of the character, the processing is identical to doSetLiteral,
// above.
{
UChar32 c = scanNamedChar();
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(c);
fLastSetLiteral = c;
break;
}
case doSetNamedRange:
// We have scanned literal-\N{CHAR NAME}. Add the range to the set.
// The left character is already in the set, and is saved in fLastSetLiteral.
// The right side needs to be picked up, the scan is at the 'N'.
// Lower Limit > Upper limit being an error matches both Java
// and ICU UnicodeSet behavior.
{
UChar32 c = scanNamedChar();
if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
error(U_REGEX_INVALID_RANGE);
}
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fLastSetLiteral, c);
fLastSetLiteral = c;
break;
}
case doSetNegate:
// Scanned a '^' at the start of a set.
// Push the negation operator onto the set op stack.
// A twist for case-insensitive matching:
// the case closure operation must happen _before_ negation.
// But the case closure operation will already be on the stack if it's required.
// This requires checking for case closure, and swapping the stack order
// if it is present.
{
int32_t tosOp = fSetOpStack.peeki();
if (tosOp == setCaseClose) {
fSetOpStack.popi();
fSetOpStack.push(setNegation, *fStatus);
fSetOpStack.push(setCaseClose, *fStatus);
} else {
fSetOpStack.push(setNegation, *fStatus);
}
}
break;
case doSetNoCloseError:
error(U_REGEX_MISSING_CLOSE_BRACKET);
break;
case doSetOpError:
error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
break;
case doSetPosixProp:
{
UnicodeSet *s = scanPosixProp();
if (s != nullptr) {
UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
tos->addAll(*s);
delete s;
} // else error. scanProp() reported the error status already.
}
break;
case doSetProp:
// Scanned a \p \P within [brackets].
{
UnicodeSet *s = scanProp();
if (s != nullptr) {
UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
tos->addAll(*s);
delete s;
} // else error. scanProp() reported the error status already.
}
break;
case doSetRange:
// We have scanned literal-literal. Add the range to the set.
// The left character is already in the set, and is saved in fLastSetLiteral.
// The right side is the current character.
// Lower Limit > Upper limit being an error matches both Java
// and ICU UnicodeSet behavior.
{
if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
error(U_REGEX_INVALID_RANGE);
}
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fLastSetLiteral, fC.fChar);
break;
}
default:
UPRV_UNREACHABLE_EXIT;
}
if (U_FAILURE(*fStatus)) {
returnVal = false;
}
return returnVal;
}