sql/item.h (3,827 lines of code) (raw):
#ifndef ITEM_INCLUDED
#define ITEM_INCLUDED
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <sys/types.h>
#include <cfloat>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <memory>
#include <new>
#include <optional>
#include <string>
#include <type_traits>
#include <vector>
#include "decimal.h"
#include "field_types.h" // enum_field_types
#include "lex_string.h"
#include "memory_debugging.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_double2ulonglong.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "my_time.h"
#include "mysql/strings/dtoa.h"
#include "mysql/strings/m_ctype.h"
#include "mysql/strings/my_strtoll10.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysql_time.h"
#include "mysqld_error.h"
#include "nulls.h"
#include "sql-common/my_decimal.h" // my_decimal
#include "sql/auth/auth_acls.h" // Access_bitmask
#include "sql/enum_query_type.h"
#include "sql/field.h" // Derivation
#include "sql/mem_root_array.h"
#include "sql/parse_location.h" // POS
#include "sql/parse_tree_node_base.h" // Parse_tree_node
#include "sql/sql_array.h" // Bounds_checked_array
#include "sql/sql_const.h"
#include "sql/sql_list.h"
#include "sql/table.h"
#include "sql/table_trigger_field_support.h" // Table_trigger_field_support
#include "sql/thr_malloc.h"
#include "sql/trigger_def.h" // enum_trigger_variable_type
#include "sql_string.h"
#include "string_with_len.h"
#include "template_utils.h"
class Item;
class Item_cache;
class Item_in_subselect;
class Item_field;
class Item_func;
class Item_multi_eq;
class Item_singlerow_subselect;
class Item_sum;
class Json_wrapper;
class Protocol;
class Query_block;
class Security_context;
class sp_head;
class sp_rcontext;
class THD;
class user_var_entry;
struct COND_EQUAL;
struct TYPELIB;
typedef Bounds_checked_array<Item *> Ref_item_array;
void item_init(void); /* Init item functions */
/**
Default condition filtering (selectivity) values used by
get_filtering_effect() and friends when better estimates
(statistics) are not available for a predicate.
*/
/**
For predicates that are always satisfied. Must be 1.0 or the filter
calculation logic will break down.
*/
constexpr float COND_FILTER_ALLPASS{1.0f};
/// Filtering effect for equalities: col1 = col2
constexpr float COND_FILTER_EQUALITY{0.1f};
/// Filtering effect for inequalities: col1 > col2
constexpr float COND_FILTER_INEQUALITY{0.3333f};
/// Filtering effect for between: col1 BETWEEN a AND b
constexpr float COND_FILTER_BETWEEN{0.1111f};
/**
Value is out-of-date, will need recalculation.
This is used by post-greedy-search logic which changes the access method and
thus makes obsolete the filtering value calculated by best_access_path(). For
example, test_if_skip_sort_order().
*/
constexpr float COND_FILTER_STALE{-1.0f};
/**
A special subcase of the above:
- if this is table/index/range scan, and
- rows_fetched is how many rows we will examine, and
- rows_fetched is less than the number of rows in the table (as determined
by test_if_cheaper_ordering() and test_if_skip_sort_order()).
Unlike the ordinary case where rows_fetched:
- is set by calculate_scan_cost(), and
- is how many rows pass the constant condition (so, less than we will
examine), and
- the actual rows_fetched to show in EXPLAIN is the number of rows in the
table (== rows which we will examine), and
- the constant condition's effect has to be moved to filter_effect for
EXPLAIN.
*/
constexpr float COND_FILTER_STALE_NO_CONST{-2.0f};
static inline uint32 char_to_byte_length_safe(uint32 char_length_arg,
uint32 mbmaxlen_arg) {
const ulonglong tmp = ((ulonglong)char_length_arg) * mbmaxlen_arg;
return (tmp > UINT_MAX32) ? (uint32)UINT_MAX32 : (uint32)tmp;
}
inline Item_result numeric_context_result_type(enum_field_types data_type,
Item_result result_type,
uint8 decimals) {
if (is_temporal_type(real_type_to_type(data_type)))
return decimals ? DECIMAL_RESULT : INT_RESULT;
if (result_type == STRING_RESULT) return REAL_RESULT;
return result_type;
}
/*
"Declared Type Collation"
A combination of collation and its derivation.
Flags for collation aggregation modes:
MY_COLL_ALLOW_SUPERSET_CONV - allow conversion to a superset
MY_COLL_ALLOW_COERCIBLE_CONV - allow conversion of a coercible value
(i.e. constant).
MY_COLL_ALLOW_CONV - allow any kind of conversion
(combination of the above two)
MY_COLL_ALLOW_NUMERIC_CONV - if all items were numbers, convert to
@@character_set_connection
MY_COLL_DISALLOW_NONE - don't allow return DERIVATION_NONE
(e.g. when aggregating for comparison)
MY_COLL_CMP_CONV - combination of MY_COLL_ALLOW_CONV
and MY_COLL_DISALLOW_NONE
*/
#define MY_COLL_ALLOW_SUPERSET_CONV 1
#define MY_COLL_ALLOW_COERCIBLE_CONV 2
#define MY_COLL_DISALLOW_NONE 4
#define MY_COLL_ALLOW_NUMERIC_CONV 8
#define MY_COLL_ALLOW_CONV \
(MY_COLL_ALLOW_SUPERSET_CONV | MY_COLL_ALLOW_COERCIBLE_CONV)
#define MY_COLL_CMP_CONV (MY_COLL_ALLOW_CONV | MY_COLL_DISALLOW_NONE)
class DTCollation {
public:
const CHARSET_INFO *collation;
Derivation derivation{DERIVATION_NONE};
uint repertoire;
void set_repertoire_from_charset(const CHARSET_INFO *cs) {
repertoire = cs->state & MY_CS_PUREASCII ? MY_REPERTOIRE_ASCII
: MY_REPERTOIRE_UNICODE30;
}
DTCollation() {
collation = &my_charset_bin;
derivation = DERIVATION_NONE;
repertoire = MY_REPERTOIRE_UNICODE30;
}
DTCollation(const CHARSET_INFO *collation_arg, Derivation derivation_arg) {
collation = collation_arg;
derivation = derivation_arg;
set_repertoire_from_charset(collation_arg);
}
void set(const DTCollation &dt) {
collation = dt.collation;
derivation = dt.derivation;
repertoire = dt.repertoire;
}
void set(const CHARSET_INFO *collation_arg, Derivation derivation_arg) {
collation = collation_arg;
derivation = derivation_arg;
set_repertoire_from_charset(collation_arg);
}
void set(const CHARSET_INFO *collation_arg, Derivation derivation_arg,
uint repertoire_arg) {
collation = collation_arg;
derivation = derivation_arg;
repertoire = repertoire_arg;
}
void set_numeric() {
collation = &my_charset_numeric;
derivation = DERIVATION_NUMERIC;
repertoire = MY_REPERTOIRE_NUMERIC;
}
void set(const CHARSET_INFO *collation_arg) {
collation = collation_arg;
set_repertoire_from_charset(collation_arg);
}
void set(Derivation derivation_arg) { derivation = derivation_arg; }
void set_repertoire(uint repertoire_arg) { repertoire = repertoire_arg; }
bool aggregate(DTCollation &dt, uint flags = 0);
bool set(DTCollation &dt1, DTCollation &dt2, uint flags = 0) {
set(dt1);
return aggregate(dt2, flags);
}
const char *derivation_name() const {
switch (derivation) {
case DERIVATION_NUMERIC:
return "NUMERIC";
case DERIVATION_IGNORABLE:
return "IGNORABLE";
case DERIVATION_COERCIBLE:
return "COERCIBLE";
case DERIVATION_IMPLICIT:
return "IMPLICIT";
case DERIVATION_SYSCONST:
return "SYSCONST";
case DERIVATION_EXPLICIT:
return "EXPLICIT";
case DERIVATION_NONE:
return "NONE";
default:
return "UNKNOWN";
}
}
};
/**
Class used as argument to Item::walk() together with mark_field_in_map()
*/
class Mark_field {
public:
Mark_field(TABLE *table, enum_mark_columns mark) : table(table), mark(mark) {}
Mark_field(enum_mark_columns mark) : table(nullptr), mark(mark) {}
/**
If == NULL, update map of any table.
If <> NULL, update map of only this table.
*/
TABLE *const table;
/// How to mark the map.
const enum_mark_columns mark;
};
/**
Class used as argument to Item::walk() together with used_tables_for_level()
*/
class Used_tables {
public:
explicit Used_tables(Query_block *select) : select(select), used_tables(0) {}
Query_block *const select; ///< Level for which data is accumulated
table_map used_tables; ///< Accumulated used tables data
};
/*************************************************************************/
/**
Storage for name strings.
Enpowers Simple_cstring with allocation routines from the sql_strmake family.
This class must stay as small as possible as we often
pass it into functions using call-by-value evaluation.
Don't add new members or virtual methods into this class!
*/
class Name_string : public Simple_cstring {
private:
void set_or_copy(const char *str, size_t length, bool is_null_terminated) {
if (is_null_terminated)
set(str, length);
else
copy(str, length);
}
public:
Name_string() : Simple_cstring() {}
/*
Please do NOT add constructor Name_string(const char *str) !
It will involve hidden strlen() call, which can affect
performance negatively. Use Name_string(str, len) instead.
*/
Name_string(const char *str, size_t length) : Simple_cstring(str, length) {}
Name_string(const LEX_STRING str) : Simple_cstring(str) {}
Name_string(const LEX_CSTRING str) : Simple_cstring(str) {}
Name_string(const char *str, size_t length, bool is_null_terminated)
: Simple_cstring() {
set_or_copy(str, length, is_null_terminated);
}
Name_string(const LEX_STRING str, bool is_null_terminated)
: Simple_cstring() {
set_or_copy(str.str, str.length, is_null_terminated);
}
/**
Allocate space using sql_strmake() or sql_strmake_with_convert().
*/
void copy(const char *str, size_t length, const CHARSET_INFO *cs);
/**
Variants for copy(), for various argument combinations.
*/
void copy(const char *str, size_t length) {
copy(str, length, system_charset_info);
}
void copy(const char *str) {
copy(str, (str ? strlen(str) : 0), system_charset_info);
}
void copy(const LEX_STRING lex) { copy(lex.str, lex.length); }
void copy(const LEX_STRING *lex) { copy(lex->str, lex->length); }
void copy(const Name_string str) { copy(str.ptr(), str.length()); }
/**
Compare name to another name in C string, case insensitively.
*/
bool eq(const char *str) const {
assert(str && ptr());
return my_strcasecmp(system_charset_info, ptr(), str) == 0;
}
bool eq_safe(const char *str) const { return is_set() && str && eq(str); }
/**
Compare name to another name in Name_string, case insensitively.
*/
bool eq(const Name_string name) const { return eq(name.ptr()); }
bool eq_safe(const Name_string name) const {
return is_set() && name.is_set() && eq(name);
}
};
#define NAME_STRING(x) Name_string(STRING_WITH_LEN(x))
/**
Max length of an Item string for its use in an error message.
This should be kept in sync with MYSQL_ERRMSG_SIZE (which should
not be exceeded).
*/
#define ITEM_TO_QUERY_SUBSTRING_CHAR_LIMIT (300)
extern const Name_string null_name_string;
/**
Storage for Item names.
Adds "autogenerated" flag and warning functionality to Name_string.
*/
class Item_name_string : public Name_string {
private:
bool m_is_autogenerated; /* indicates if name of this Item
was autogenerated or set by user */
public:
Item_name_string() : Name_string(), m_is_autogenerated(true) {}
Item_name_string(const Name_string name)
: Name_string(name), m_is_autogenerated(true) {}
/**
Set m_is_autogenerated flag to the given value.
*/
void set_autogenerated(bool is_autogenerated) {
m_is_autogenerated = is_autogenerated;
}
/**
Return the auto-generated flag.
*/
bool is_autogenerated() const { return m_is_autogenerated; }
using Name_string::copy;
/**
Copy name together with autogenerated flag.
Produce a warning if name was cut.
*/
void copy(const char *str_arg, size_t length_arg, const CHARSET_INFO *cs_arg,
bool is_autogenerated_arg);
};
/**
Instances of Name_resolution_context store the information necessary for
name resolution of Items and other context analysis of a query made in
fix_fields().
This structure is a part of Query_block, a pointer to this structure is
assigned when an item is created (which happens mostly during parsing
(sql_yacc.yy)), but the structure itself will be initialized after parsing
is complete
@todo move subquery of INSERT ... SELECT and CREATE ... SELECT to
separate Query_block which allow to remove tricks of changing this
structure before and after INSERT/CREATE and its SELECT to make correct
field name resolution.
*/
struct Name_resolution_context {
/**
The name resolution context to search in when an Item cannot be
resolved in this context (the context of an outer select)
*/
Name_resolution_context *outer_context{nullptr};
/// Link to next name res context with the same query block as the base
Name_resolution_context *next_context{nullptr};
/**
List of tables used to resolve the items of this context. Usually these
are tables from the FROM clause of SELECT statement. The exceptions are
INSERT ... SELECT and CREATE ... SELECT statements, where SELECT
subquery is not moved to a separate Query_block. For these types of
statements we have to change this member dynamically to ensure correct
name resolution of different parts of the statement.
*/
Table_ref *table_list{nullptr};
/**
In most cases the two table references below replace 'table_list' above
for the purpose of name resolution. The first and last name resolution
table references allow us to search only in a sub-tree of the nested
join tree in a FROM clause. This is needed for NATURAL JOIN, JOIN ... USING
and JOIN ... ON.
*/
Table_ref *first_name_resolution_table{nullptr};
/**
Last table to search in the list of leaf table references that begins
with first_name_resolution_table.
*/
Table_ref *last_name_resolution_table{nullptr};
/**
Query_block item belong to, in case of merged VIEW it can differ from
Query_block where item was created, so we can't use table_list/field_list
from there
*/
Query_block *query_block{nullptr};
/*
Processor of errors caused during Item name resolving, now used only to
hide underlying tables in errors about views (i.e. it substitute some
errors for views)
*/
bool view_error_handler{false};
Table_ref *view_error_handler_arg{nullptr};
/**
When true, items are resolved in this context against
Query_block::item_list, SELECT_lex::group_list and
this->table_list. If false, items are resolved only against
this->table_list.
@see Query_block::item_list, Query_block::group_list
*/
bool resolve_in_select_list{false};
/**
Security context of this name resolution context. It's used for views
and is non-zero only if the view is defined with SQL SECURITY DEFINER.
*/
Security_context *security_ctx{nullptr};
void resolve_in_table_list_only(Table_ref *tables) {
table_list = first_name_resolution_table = tables;
resolve_in_select_list = false;
}
};
/**
Struct used to pass around arguments to/from
check_function_as_value_generator
*/
struct Check_function_as_value_generator_parameters {
Check_function_as_value_generator_parameters(
int default_error_code, Value_generator_source val_gen_src)
: err_code(default_error_code), source(val_gen_src) {}
/// the order of the column in table
int col_index{-1};
/// the error code found during check(if any)
int err_code;
/*
If it is a generated column, default expression or check constraint
expression value generator.
*/
Value_generator_source source;
/// the name of the function which is not allowed
const char *banned_function_name{nullptr};
/// Return the correct error code, based on whether or not if we are checking
/// for disallowed functions in generated column expressions, in default
/// value expressions or in check constraint expression.
int get_unnamed_function_error_code() const {
return ((source == VGS_GENERATED_COLUMN)
? ER_GENERATED_COLUMN_FUNCTION_IS_NOT_ALLOWED
: (source == VGS_DEFAULT_EXPRESSION)
? ER_DEFAULT_VAL_GENERATED_FUNCTION_IS_NOT_ALLOWED
: ER_CHECK_CONSTRAINT_FUNCTION_IS_NOT_ALLOWED);
}
};
/*
Store and restore the current state of a name resolution context.
*/
class Name_resolution_context_state {
private:
Table_ref *save_table_list;
Table_ref *save_first_name_resolution_table;
Table_ref *save_next_name_resolution_table;
bool save_resolve_in_select_list;
Table_ref *save_next_local;
public:
/* Save the state of a name resolution context. */
void save_state(Name_resolution_context *context, Table_ref *table_list) {
save_table_list = context->table_list;
save_first_name_resolution_table = context->first_name_resolution_table;
save_resolve_in_select_list = context->resolve_in_select_list;
save_next_local = table_list->next_local;
save_next_name_resolution_table = table_list->next_name_resolution_table;
}
/* Restore a name resolution context from saved state. */
void restore_state(Name_resolution_context *context, Table_ref *table_list) {
table_list->next_local = save_next_local;
table_list->next_name_resolution_table = save_next_name_resolution_table;
context->table_list = save_table_list;
context->first_name_resolution_table = save_first_name_resolution_table;
context->resolve_in_select_list = save_resolve_in_select_list;
}
void update_next_local(Table_ref *table_list) {
save_next_local = table_list;
}
Table_ref *get_first_name_resolution_table() {
return save_first_name_resolution_table;
}
};
/*
This enum is used to report information about monotonicity of function
represented by Item* tree.
Monotonicity is defined only for Item* trees that represent table
partitioning expressions (i.e. have no subqueries/user vars/dynamic parameters
etc etc). An Item* tree is assumed to have the same monotonicity properties
as its corresponding function F:
[signed] longlong F(field1, field2, ...) {
put values of field_i into table record buffer;
return item->val_int();
}
NOTE
At the moment function monotonicity is not well defined (and so may be
incorrect) for Item trees with parameters/return types that are different
from INT_RESULT, may be NULL, or are unsigned.
It will be possible to address this issue once the related partitioning bugs
(BUG#16002, BUG#15447, BUG#13436) are fixed.
The NOT_NULL enums are used in TO_DAYS, since TO_DAYS('2001-00-00') returns
NULL which puts those rows into the NULL partition, but
'2000-12-31' < '2001-00-00' < '2001-01-01'. So special handling is needed
for this (see Bug#20577).
*/
typedef enum monotonicity_info {
NON_MONOTONIC, /* none of the below holds */
MONOTONIC_INCREASING, /* F() is unary and (x < y) => (F(x) <= F(y)) */
MONOTONIC_INCREASING_NOT_NULL, /* But only for valid/real x and y */
MONOTONIC_STRICT_INCREASING, /* F() is unary and (x < y) => (F(x) < F(y)) */
MONOTONIC_STRICT_INCREASING_NOT_NULL /* But only for valid/real x and y */
} enum_monotonicity_info;
/**
A type for SQL-like 3-valued Booleans: true/false/unknown.
*/
class Bool3 {
public:
/// @returns an instance set to "FALSE"
static const Bool3 false3() { return Bool3(v_FALSE); }
/// @returns an instance set to "UNKNOWN"
static const Bool3 unknown3() { return Bool3(v_UNKNOWN); }
/// @returns an instance set to "TRUE"
static const Bool3 true3() { return Bool3(v_TRUE); }
bool is_true() const { return m_val == v_TRUE; }
bool is_unknown() const { return m_val == v_UNKNOWN; }
bool is_false() const { return m_val == v_FALSE; }
private:
enum value { v_FALSE, v_UNKNOWN, v_TRUE };
/// This is private; instead, use false3()/etc.
Bool3(value v) : m_val(v) {}
value m_val;
/*
No operator to convert Bool3 to bool (or int) - intentionally: how
would you map unknown3 to true/false?
It is because we want to block such conversions that Bool3 is a class
instead of a plain enum.
*/
};
/**
Type properties, used to collect type information for later assignment
to an Item object. The object stores attributes signedness, max length
and collation. However, precision and scale (for decimal numbers) and
fractional second precision (for time and datetime) are not stored,
since any type derived from this object will have default values for these
attributes.
*/
class Type_properties {
public:
/// Constructor for any signed numeric type or date type
/// Defaults are provided for attributes like signedness and max length
Type_properties(enum_field_types type_arg)
: m_type(type_arg),
m_unsigned_flag(false),
m_max_length(0),
m_collation(&my_charset_numeric, DERIVATION_NUMERIC) {
assert(type_arg != MYSQL_TYPE_VARCHAR && type_arg != MYSQL_TYPE_JSON);
}
/// Constructor for any numeric type, with explicit signedness
Type_properties(enum_field_types type_arg, bool unsigned_arg)
: m_type(type_arg),
m_unsigned_flag(unsigned_arg),
m_max_length(0),
m_collation(&my_charset_numeric, DERIVATION_NUMERIC) {
assert(is_numeric_type(type_arg) || type_arg == MYSQL_TYPE_BIT ||
type_arg == MYSQL_TYPE_YEAR);
}
/// Constructor for character type, with explicit character set.
/// Default length/max length is provided.
Type_properties(enum_field_types type_arg, const CHARSET_INFO *charset)
: m_type(type_arg),
m_unsigned_flag(false),
m_max_length(0),
m_collation(charset, DERIVATION_COERCIBLE) {}
/// Constructor for Item
Type_properties(Item &item);
const enum_field_types m_type;
const bool m_unsigned_flag;
const uint32 m_max_length;
const DTCollation m_collation;
};
/*************************************************************************/
class Settable_routine_parameter {
public:
Settable_routine_parameter() = default;
virtual ~Settable_routine_parameter() = default;
/**
Set required privileges for accessing the parameter.
@param privilege The required privileges for this field, with the
following alternatives:
MODE_IN - SELECT_ACL
MODE_OUT - UPDATE_ACL
MODE_INOUT - SELECT_ACL | UPDATE_ACL
*/
virtual void set_required_privilege(Access_bitmask privilege
[[maybe_unused]]) {}
/*
Set parameter value.
SYNOPSIS
set_value()
thd thread handle
ctx context to which parameter belongs (if it is local
variable).
it item which represents new value
RETURN
false if parameter value has been set,
true if error has occurred.
*/
virtual bool set_value(THD *thd, sp_rcontext *ctx, Item **it) = 0;
virtual void set_out_param_info(Send_field *info [[maybe_unused]]) {}
virtual const Send_field *get_out_param_info() const { return nullptr; }
};
/*
Analyzer function
SYNOPSIS
argp in/out IN: Analysis parameter
OUT: Parameter to be passed to the transformer
RETURN
true Invoke the transformer
false Don't do it
*/
typedef bool (Item::*Item_analyzer)(uchar **argp);
/**
Type for transformers used by Item::transform and Item::compile
@param arg Argument used by the transformer. Really a typeless pointer
in spite of the uchar type (historical reasons). The
transformer needs to cast this to the desired pointer type
@returns The transformed item
*/
typedef Item *(Item::*Item_transformer)(uchar *arg);
typedef void (*Cond_traverser)(const Item *item, void *arg);
/**
Utility mixin class to be able to walk() only parts of item trees.
Used with PREFIX+POSTFIX walk: in the prefix call of the Item
processor, we process the item X, may decide that its children should not
be processed (just like if they didn't exist): processor calls stop_at(X)
for that. Then walk() goes to a child Y; the processor tests is_stopped(Y)
which returns true, so processor sees that it must not do any processing
and returns immediately. Finally, the postfix call to the processor on X
tests is_stopped(X) which returns "true" and understands that the
not-to-be-processed children have been skipped so calls restart(). Thus,
any sibling of X, any part of the Item tree not under X, can then be
processed.
*/
class Item_tree_walker {
protected:
Item_tree_walker() {}
~Item_tree_walker() { assert(!stopped_at_item); }
Item_tree_walker(const Item_tree_walker &) = delete;
Item_tree_walker &operator=(const Item_tree_walker &) = delete;
/// Stops walking children of this item
void stop_at(const Item *i) {
assert(stopped_at_item == nullptr);
stopped_at_item = i;
}
/**
@returns if we are stopped. If item 'i' is where we stopped, restarts the
walk for next items.
*/
bool is_stopped(const Item *i) {
if (stopped_at_item != nullptr) {
/*
Walking was disabled for a tree part rooted a one ancestor of 'i' or
rooted at 'i'.
*/
if (stopped_at_item == i) {
/*
Walking was disabled for the tree part rooted at 'i'; we have now just
returned back to this root (POSTFIX call), left the tree part:
enable the walk again, for other tree parts.
*/
stopped_at_item = nullptr;
}
// No further processing to do for this item:
return true;
}
return false;
}
private:
const Item *stopped_at_item{nullptr};
};
/// Increment *num if it is less than its maximal value.
template <typename T>
void SafeIncrement(T *num) {
if (*num < std::numeric_limits<T>::max()) {
*num += 1;
}
}
/**
This class represents the cost of evaluating an Item. @see SortPredicates
to see how this is used.
*/
class CostOfItem final {
public:
/// Set '*this' to represent the cost of 'item'.
void Compute(const Item &item) {
if (!m_computed) {
ComputeInternal(item);
}
}
void MarkExpensive() {
assert(!m_computed);
m_is_expensive = true;
}
/// Add the cost of accessing a Field_str.
void AddStrFieldCost() {
assert(!m_computed);
SafeIncrement(&m_str_fields);
}
/// Add the cost of accessing any other Field.
void AddFieldCost() {
assert(!m_computed);
SafeIncrement(&m_other_fields);
}
bool IsExpensive() const {
assert(m_computed);
return m_is_expensive;
}
/**
Get the cost of field access when evaluating the Item associated with this
object. The cost unit is arbitrary, but the relative cost of different
items reflect the fact that operating on Field_str is more expensive than
other Field subclasses.
*/
double FieldCost() const {
assert(m_computed);
return m_other_fields * kOtherFieldCost + m_str_fields * kStrFieldCost;
}
private:
/// The cost of accessing a Field_str, relative to other Field types.
/// (The value was determined using benchmarks.)
static constexpr double kStrFieldCost = 1.8;
/// The cost of accessing a Field other than Field_str. 1.0 by definition.
static constexpr double kOtherFieldCost = 1.0;
/// True if 'ComputeInternal()' has been called.
bool m_computed{false};
/// True if the associated Item calls user defined functions or stored
/// procedures.
bool m_is_expensive{false};
/// The number of Field_str objects accessed by the associated Item.
uint8 m_str_fields{0};
/// The number of other Field objects accessed by the associated Item.
uint8 m_other_fields{0};
/// Compute the cost of 'root' and its descendants.
void ComputeInternal(const Item &root);
};
/**
This class represents a subquery contained in some subclass of
Item_subselect, @see FindContainedSubqueries().
*/
struct ContainedSubquery {
/// The strategy for executing the subquery.
enum class Strategy : char {
/**
An independent subquery that is materialized, e.g.:
"SELECT * FROM tab WHERE field IN <independent subquery>".
where 'independent subquery' does not depend on any fields in 'tab'.
(This corresponds to the Item_in_subselect class.)
*/
kMaterializable,
/**
A subquery that is reevaluated for each row, e.g.:
"SELECT * FROM tab WHERE field IN <dependent subquery>" or
"SELECT * FROM tab WHERE field = <dependent subquery>".
where 'dependent subquery' depends on at least one field in 'tab'.
Alternatively, the subquery may be independent of 'tab', but contain
a non-deterministic function such as 'rand()'. Such subqueries are also
required to be reevaluated for each row.
*/
kNonMaterializable,
/**
An independent single-row subquery that is evaluated once, e.g.:
"SELECT * FROM tab WHERE field = <independent single-row subquery>".
(This corresponds to the Item_singlerow_subselect class.)
*/
kIndependentSingleRow
};
/// The root path of the subquery.
AccessPath *path;
/// The strategy for executing the subquery.
Strategy strategy;
/// The width (in bytes) of the subquery's rows. For variable-sized values we
/// use Item.max_length (but cap it at kMaxItemLengthEstimate).
/// @see kMaxItemLengthEstimate and
/// @see Item_in_subselect::get_contained_subquery().
int row_width;
};
/**
Base class that is used to represent any kind of expression in a
relational query. The class provides subclasses for simple components, like
literal (constant) values, column references and variable references,
as well as more complex expressions like comparison predicates,
arithmetic and string functions, row objects, function references and
subqueries.
The lifetime of an Item class object is often the same as a relational
statement, which may be used for several executions, but in some cases
it may also be generated for an optimized statement and thus be valid
only for one execution.
For Item objects with longer lifespan than one execution, we must take
special precautions when referencing objects with shorter lifespan.
For example, TABLE and Field objects against most tables are valid only for
one execution. For such objects, Item classes should rather reference
Table_ref and Item_field objects instead of TABLE and Field, because
these classes support dynamic rebinding of objects before each execution.
See Item::bind_fields() which binds new objects per execution and
Item::cleanup() that deletes references to such objects.
These mechanisms can also be used to handle other objects with shorter
lifespan, such as function references and variable references.
*/
class Item : public Parse_tree_node {
typedef Parse_tree_node super;
friend class udf_handler;
protected:
/**
Sets the result value of the function an empty string, using the current
character set. No memory is allocated.
@retval A pointer to the str_value member.
*/
String *make_empty_result() {
str_value.set("", 0, collation.collation);
return &str_value;
}
public:
Item(const Item &) = delete;
void operator=(Item &) = delete;
static void *operator new(size_t size) noexcept {
return (*THR_MALLOC)->Alloc(size);
}
static void *operator new(size_t size, MEM_ROOT *mem_root,
const std::nothrow_t &arg
[[maybe_unused]] = std::nothrow) noexcept {
return mem_root->Alloc(size);
}
static void operator delete(void *ptr [[maybe_unused]],
size_t size [[maybe_unused]]) {
TRASH(ptr, size);
}
static void operator delete(void *, MEM_ROOT *,
const std::nothrow_t &) noexcept {}
enum Type {
INVALID_ITEM,
FIELD_ITEM, ///< A reference to a field (column) in a table.
FUNC_ITEM, ///< A function call reference.
SUM_FUNC_ITEM, ///< A grouped aggregate function, or window function.
AGGR_FIELD_ITEM, ///< A special field for certain aggregate operations.
STRING_ITEM, ///< A string literal value.
INT_ITEM, ///< An integer literal value.
DECIMAL_ITEM, ///< A decimal literal value.
REAL_ITEM, ///< A floating-point literal value.
NULL_ITEM, ///< A NULL value.
HEX_BIN_ITEM, ///< A hexadecimal or binary literal value.
DEFAULT_VALUE_ITEM, ///< A default value for a column.
COND_ITEM, ///< An AND or OR condition.
REF_ITEM, ///< An indirect reference to another item.
INSERT_VALUE_ITEM, ///< A value from a VALUES function (deprecated).
SUBQUERY_ITEM, ///< A subquery or predicate referencing a subquery.
ROW_ITEM, ///< A row of other items.
CACHE_ITEM, ///< An internal item used to cache values.
TYPE_HOLDER_ITEM, ///< An internal item used to help aggregate a type.
PARAM_ITEM, ///< A dynamic parameter used in a prepared statement.
ROUTINE_FIELD_ITEM, ///< A variable inside a routine (proc, func, trigger)
TRIGGER_FIELD_ITEM, ///< An OLD or NEW field, used in trigger definitions.
XPATH_NODESET_ITEM, ///< Used in XPATH expressions.
VALUES_COLUMN_ITEM, ///< A value from a VALUES clause.
NAME_CONST_ITEM ///< A NAME_CONST expression
};
enum cond_result { COND_UNDEF, COND_OK, COND_TRUE, COND_FALSE };
enum traverse_order { POSTFIX, PREFIX };
/// How to cache constant JSON data
enum enum_const_item_cache {
/// Don't cache
CACHE_NONE = 0,
/// Source data is a JSON string, parse and cache result
CACHE_JSON_VALUE,
/// Source data is SQL scalar, convert and cache result
CACHE_JSON_ATOM
};
enum Bool_test ///< Modifier for result transformation
{
BOOL_IS_TRUE = 0x00,
BOOL_IS_FALSE = 0x01,
BOOL_IS_UNKNOWN = 0x02,
BOOL_NOT_TRUE = 0x03,
BOOL_NOT_FALSE = 0x04,
BOOL_NOT_UNKNOWN = 0x05,
BOOL_IDENTITY = 0x06,
BOOL_NEGATED = 0x07,
BOOL_ALWAYS_TRUE = 0x08,
BOOL_ALWAYS_FALSE = 0x09,
};
// Return the default data type for a given result type
static enum_field_types result_to_type(Item_result result) {
switch (result) {
case INT_RESULT:
return MYSQL_TYPE_LONGLONG;
case DECIMAL_RESULT:
return MYSQL_TYPE_NEWDECIMAL;
case REAL_RESULT:
return MYSQL_TYPE_DOUBLE;
case STRING_RESULT:
return MYSQL_TYPE_VARCHAR;
case INVALID_RESULT:
return MYSQL_TYPE_INVALID;
case ROW_RESULT:
default:
assert(false);
}
return MYSQL_TYPE_INVALID;
}
// Return the default result type for a given data type
static Item_result type_to_result(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_BOOL:
case MYSQL_TYPE_BIT:
case MYSQL_TYPE_YEAR:
return INT_RESULT;
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_DECIMAL:
return DECIMAL_RESULT;
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return REAL_RESULT;
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_VECTOR:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_JSON:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
return STRING_RESULT;
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIME2:
return STRING_RESULT;
case MYSQL_TYPE_INVALID:
return INVALID_RESULT;
case MYSQL_TYPE_NULL:
return STRING_RESULT;
case MYSQL_TYPE_TYPED_ARRAY:
break;
}
assert(false);
return INVALID_RESULT;
}
/**
Provide data type for a user or system variable, based on the type of
the item that is assigned to the variable.
@note MYSQL_TYPE_VARCHAR is returned for all string types, but must be
further adjusted based on maximum string length by the caller.
@param src_type Source type that variable's type is derived from
*/
static enum_field_types type_for_variable(enum_field_types src_type) {
switch (src_type) {
case MYSQL_TYPE_BOOL:
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_BIT:
return MYSQL_TYPE_LONGLONG;
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
return MYSQL_TYPE_NEWDECIMAL;
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return MYSQL_TYPE_DOUBLE;
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_STRING:
return MYSQL_TYPE_VARCHAR;
case MYSQL_TYPE_YEAR:
return MYSQL_TYPE_LONGLONG;
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_JSON:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_NULL:
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_VECTOR:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
return MYSQL_TYPE_VARCHAR;
case MYSQL_TYPE_INVALID:
case MYSQL_TYPE_TYPED_ARRAY:
return MYSQL_TYPE_INVALID;
}
assert(false);
return MYSQL_TYPE_NULL;
}
/// Item constructor for general use.
Item();
/**
Constructor used by Item_field, Item_ref & aggregate functions.
Used for duplicating lists in processing queries with temporary tables.
Also used for Item_cond_and/Item_cond_or for creating top AND/OR structure
of WHERE clause to protect it of optimisation changes in prepared statements
*/
Item(THD *thd, const Item *item);
/**
Parse-time context-independent constructor.
This constructor and caller constructors of child classes must not
access/change thd->lex (including thd->lex->current_query_block(),
thd->m_parser_state etc structures).
If we need to finalize the construction of the object, then we move
all context-sensitive code to the itemize() virtual function.
The POS parameter marks this constructor and other context-independent
constructors of child classes for easy recognition/separation from other
(context-dependent) constructors.
*/
explicit Item(const POS &);
#ifdef EXTRA_DEBUG
~Item() override { item_name.set(0); }
#else
~Item() override = default;
#endif
private:
/*
Hide the contextualize*() functions: call/override the itemize()
in Item class tree instead.
*/
bool do_contextualize(Parse_context *) override {
assert(0);
return true;
}
protected:
/**
Helper function to skip itemize() for grammar-allocated items
@param [out] res pointer to "this"
@retval true can skip itemize()
@retval false can't skip: the item is allocated directly by the parser
*/
bool skip_itemize(Item **res) {
*res = this;
return !is_parser_item;
}
/*
Checks if the function should return binary result based on the items
provided as parameter.
Function should only be used by Item_bit_func*
@param a item to check
@param b item to check, may be nullptr
@returns true if binary result.
*/
static bool bit_func_returns_binary(const Item *a, const Item *b);
/**
The core function that does the actual itemization. itemize() is just a
wrapper over this.
*/
virtual bool do_itemize(Parse_context *pc, Item **res);
public:
/**
The same as contextualize() but with additional parameter
This function finalize the construction of Item objects (see the Item(POS)
constructor): we can access/change parser contexts from the itemize()
function.
Derived classes should not override this. If needed, they should
override do_itemize().
@param pc current parse context
@param [out] res pointer to "this" or to a newly allocated
replacement object to use in the Item tree instead
@retval false success
@retval true syntax/OOM/etc error
*/
// Visual Studio with MSVC_CPPCHECK=ON gives warning C26435:
// Function <fun> should specify exactly one of
// 'virtual', 'override', or 'final'
MY_COMPILER_DIAGNOSTIC_PUSH()
MY_COMPILER_MSVC_DIAGNOSTIC_IGNORE(26435)
virtual bool itemize(Parse_context *pc, Item **res) final {
// For condition#2 below ... If position is empty, this item was not
// created in the parser; so don't show it in the parse tree.
if (pc->m_show_parse_tree == nullptr || this->m_pos.is_empty())
return do_itemize(pc, res);
Show_parse_tree *tree = pc->m_show_parse_tree.get();
if (begin_parse_tree(tree)) return true;
if (do_itemize(pc, res)) return true;
if (end_parse_tree(tree)) return true;
return false;
}
MY_COMPILER_DIAGNOSTIC_POP()
void rename(char *new_name);
void init_make_field(Send_field *tmp_field, enum enum_field_types type);
/**
Called for every Item after use (preparation and execution).
Release all allocated resources, such as dynamic memory.
Prepare for new execution by clearing cached values.
Do not remove values allocated during preparation, destructor handles this.
*/
virtual void cleanup() { marker = MARKER_NONE; }
/**
Called when an item has been removed, can be used to notify external
objects about the removal, e.g subquery predicates that are part of
the sj_candidates container.
*/
virtual void notify_removal() {}
virtual void make_field(Send_field *field);
virtual Field *make_string_field(TABLE *table) const;
virtual bool fix_fields(THD *, Item **);
/**
Fix after tables have been moved from one query_block level to the parent
level, e.g by semijoin conversion.
Basically re-calculate all attributes dependent on the tables.
@param parent_query_block query_block that tables are moved to.
@param removed_query_block query_block that tables are moved away from,
child of parent_query_block.
*/
virtual void fix_after_pullout(Query_block *parent_query_block
[[maybe_unused]],
Query_block *removed_query_block
[[maybe_unused]]) {}
/*
should be used in case where we are sure that we do not need
complete fix_fields() procedure.
*/
inline void quick_fix_field() { fixed = true; }
virtual void set_can_use_prefix_key() {}
/**
Propagate data type specifications into parameters and user variables.
If item has descendants, propagate type recursively into these.
@param thd thread handler
@param type Data type properties that are propagated
@returns false if success, true if error
*/
virtual bool propagate_type(THD *thd [[maybe_unused]],
const Type_properties &type [[maybe_unused]]) {
return false;
}
/**
Wrapper for easier calling of propagate_type(const Type_properties &).
@param thd thread handler
@param def type to make Type_properties object
@param pin if true: also mark the type as pinned
@param inherit if true: also mark the type as inherited
@returns false if success, true if error
*/
bool propagate_type(THD *thd, enum_field_types def = MYSQL_TYPE_VARCHAR,
bool pin = false, bool inherit = false) {
/*
Propagate supplied type if types have not yet been assigned to expression,
or type is pinned, in which case the supplied type overrides the
actual type of parameters. Note we do not support "pinning" of
expressions containing parameters, only standalone parameters,
but this is a very minor problem.
*/
if (data_type() != MYSQL_TYPE_INVALID && !(pin && type() == PARAM_ITEM))
return false;
if (propagate_type(thd, (def == MYSQL_TYPE_VARCHAR)
? Type_properties(def, Item::default_charset())
: (def == MYSQL_TYPE_JSON)
? Type_properties(def, &my_charset_utf8mb4_bin)
: Type_properties(def)))
return true;
if (pin) pin_data_type();
if (inherit) set_data_type_inherited();
return false;
}
/**
For Items with data type JSON, mark that a string argument is treated
as a scalar JSON value. Only relevant for the Item_param class.
*/
virtual void mark_json_as_scalar() {}
/**
If this item represents a IN/ALL/ANY/comparison_operator
subquery, return that (along with data on how it will be executed).
(These subqueries correspond to
@see Item_in_subselect and @see Item_singlerow_subselect .) Also,
@see FindContainedSubqueries() for context.
@param outer_query_block the Query_block to which 'this' belongs.
@returns The subquery that 'this' represents, if there is one.
*/
virtual std::optional<ContainedSubquery> get_contained_subquery(
const Query_block *outer_query_block [[maybe_unused]]) {
return std::nullopt;
}
protected:
/**
Helper function which does all of the work for
save_in_field(Field*, bool), except some error checking common to
all subclasses, which is performed by save_in_field() itself.
Subclasses that need to specialize the behaviour of
save_in_field(), should override this function instead of
save_in_field().
@param[in,out] field the field to save the item into
@param no_conversions whether or not to allow conversions of the value
@return the status from saving into the field
@retval TYPE_OK item saved without any errors or warnings
@retval != TYPE_OK there were errors or warnings when saving the item
*/
virtual type_conversion_status save_in_field_inner(Field *field,
bool no_conversions);
public:
/**
Save the item into a field but do not emit any warnings.
@param field field to save the item into
@param no_conversions whether or not to allow conversions of the value
@return the status from saving into the field
@retval TYPE_OK item saved without any issues
@retval != TYPE_OK there were issues saving the item
*/
type_conversion_status save_in_field_no_warnings(Field *field,
bool no_conversions);
/**
Save a temporal value in packed longlong format into a Field.
Used in optimizer.
Subclasses that need to specialize this function, should override
save_in_field_inner().
@param[in,out] field the field to save the item into
@param no_conversions whether or not to allow conversions of the value
@return the status from saving into the field
@retval TYPE_OK item saved without any errors or warnings
@retval != TYPE_OK there were errors or warnings when saving the item
*/
type_conversion_status save_in_field(Field *field, bool no_conversions);
/**
A slightly faster value of save_in_field() that returns no error value
(you will need to check thd->is_error() yourself), and does not support
saving into hidden fields for functional indexes. Used by copy_funcs(),
to avoid the functional call overhead and RAII setup of save_in_field().
*/
void save_in_field_no_error_check(Field *field, bool no_conversions) {
assert(!field->is_field_for_functional_index());
save_in_field_inner(field, no_conversions);
}
virtual void save_org_in_field(Field *field) { save_in_field(field, true); }
virtual bool send(Protocol *protocol, String *str);
bool evaluate(THD *thd, String *str);
/**
Compare this item with another item for equality.
If both pointers are the same, the items are equal.
Both items must be of same type.
For literal values, metadata must be the same and the values must be equal.
Strings are compared with the embedded collation.
For column references, table references and column names must be the same.
For functions, the function type, function properties and arguments must
be equal. Otherwise, see specific implementations.
@todo: Current implementation requires that cache objects, ref objects
and rollup wrappers are stripped away. This should be eliminated.
*/
virtual bool eq(const Item *) const;
const Item *unwrap_for_eq() const;
virtual Item_result result_type() const { return REAL_RESULT; }
/**
Result type when an item appear in a numeric context.
See Field::numeric_context_result_type() for more comments.
*/
virtual Item_result numeric_context_result_type() const {
return ::numeric_context_result_type(data_type(), result_type(), decimals);
}
/**
Similar to result_type() but makes DATE, DATETIME, TIMESTAMP
pretend to be numbers rather than strings.
*/
inline Item_result temporal_with_date_as_number_result_type() const {
return is_temporal_with_date() ? (decimals ? DECIMAL_RESULT : INT_RESULT)
: result_type();
}
/**
Set data type for item as inherited.
Non-empty implementation only for dynamic parameters.
*/
virtual void set_data_type_inherited() {}
/**
Pin the data type for the item.
Non-empty implementation only for dynamic parameters.
*/
virtual void pin_data_type() {}
/// Retrieve the derived data type of the Item.
inline enum_field_types data_type() const {
return static_cast<enum_field_types>(m_data_type);
}
/**
Retrieve actual data type for an item. Equal to data_type() for
all items, except parameters.
*/
virtual enum_field_types actual_data_type() const { return data_type(); }
/**
Get the default data (output) type for the specific item.
Important for some SQL functions that may deliver multiple result types,
and is used to determine data type for function's parameters that cannot
be type-resolved by looking at the context.
An example of such function is '+', which may return INT, DECIMAL,
DOUBLE, depending on arguments.
On the contrary, many other functions have a fixed output type, usually
set with set_data_type_XXX(), which overrides the value of
default_data_type(). For example, COS always returns DOUBLE,
*/
virtual enum_field_types default_data_type() const {
// If data type has been set, the information returned here is irrelevant:
assert(data_type() == MYSQL_TYPE_INVALID);
return MYSQL_TYPE_VARCHAR;
}
/**
Set the data type of the current Item. It is however recommended to
use one of the type-specific setters if possible.
@param data_type The data type of this Item.
*/
inline void set_data_type(enum_field_types data_type) {
m_data_type = static_cast<uint8>(data_type);
}
inline void set_data_type_null() {
set_data_type(MYSQL_TYPE_NULL);
collation.set(&my_charset_bin, DERIVATION_IGNORABLE);
max_length = 0;
set_nullable(true);
}
inline void set_data_type_bool() {
set_data_type(MYSQL_TYPE_LONGLONG);
collation.set_numeric();
decimals = 0;
max_length = 1;
}
/**
Set the data type of the Item to be a specific integer type
@param type Integer type
@param unsigned_prop Whether the integer is signed or not
@param max_width Maximum width of field in number of digits
*/
inline void set_data_type_int(enum_field_types type, bool unsigned_prop,
uint32 max_width) {
assert(type == MYSQL_TYPE_TINY || type == MYSQL_TYPE_SHORT ||
type == MYSQL_TYPE_INT24 || type == MYSQL_TYPE_LONG ||
type == MYSQL_TYPE_LONGLONG);
set_data_type(type);
collation.set_numeric();
unsigned_flag = unsigned_prop;
decimals = 0;
fix_char_length(max_width);
}
/**
Set the data type of the Item to be longlong.
Maximum display width is set to be the maximum of a 64-bit integer,
but it may be adjusted later. The unsigned property is not affected.
*/
inline void set_data_type_longlong() {
set_data_type(MYSQL_TYPE_LONGLONG);
collation.set_numeric();
decimals = 0;
fix_char_length(21);
}
/**
Set the data type of the Item to be decimal.
The unsigned property must have been set before calling this function.
@param precision Number of digits of precision
@param scale Number of digits after decimal point.
*/
inline void set_data_type_decimal(uint8 precision, uint8 scale) {
set_data_type(MYSQL_TYPE_NEWDECIMAL);
collation.set_numeric();
assert(precision <= DECIMAL_MAX_PRECISION);
decimals = scale;
fix_char_length(my_decimal_precision_to_length_no_truncation(
precision, scale, unsigned_flag));
}
/// Set the data type of the Item to be double precision floating point.
inline void set_data_type_double() {
set_data_type(MYSQL_TYPE_DOUBLE);
decimals = DECIMAL_NOT_SPECIFIED;
max_length = float_length(decimals);
collation.set_numeric();
}
/// Set the data type of the Item to be single precision floating point.
inline void set_data_type_float() {
set_data_type(MYSQL_TYPE_FLOAT);
decimals = DECIMAL_NOT_SPECIFIED;
max_length = float_length(decimals);
collation.set_numeric();
}
/**
Set the Item to be variable length string. Actual type is determined from
maximum string size. Collation must have been set before calling function.
@param max_l Maximum number of characters in string
*/
inline void set_data_type_string(uint32 max_l) {
max_length = max_l * collation.collation->mbmaxlen;
decimals = DECIMAL_NOT_SPECIFIED;
if (max_length <= Field::MAX_VARCHAR_WIDTH)
set_data_type(MYSQL_TYPE_VARCHAR);
else if (max_length <= Field::MAX_MEDIUM_BLOB_WIDTH)
set_data_type(MYSQL_TYPE_MEDIUM_BLOB);
else
set_data_type(MYSQL_TYPE_LONG_BLOB);
}
/**
Set the Item to be variable length string. Like function above, but with
larger string length precision.
@param max_char_length_arg Maximum number of characters in string
*/
inline void set_data_type_string(ulonglong max_char_length_arg) {
ulonglong max_result_length =
max_char_length_arg * collation.collation->mbmaxlen;
if (max_result_length > MAX_BLOB_WIDTH) {
max_result_length = MAX_BLOB_WIDTH;
m_nullable = true;
}
set_data_type_string(
uint32(max_result_length / collation.collation->mbmaxlen));
}
/**
Set the Item to be variable length string. Like function above, but will
also set character set and collation.
@param max_l Maximum number of characters in string
@param cs Pointer to character set and collation struct
*/
inline void set_data_type_string(uint32 max_l, const CHARSET_INFO *cs) {
collation.collation = cs;
set_data_type_string(max_l);
}
/**
Set the Item to be variable length string. Like function above, but will
also set full collation information.
@param max_l Maximum number of characters in string
@param coll Ref to collation data, including derivation and repertoire
*/
inline void set_data_type_string(uint32 max_l, const DTCollation &coll) {
collation.set(coll);
set_data_type_string(max_l);
}
/**
Set the Item to be fixed length string. Collation must have been set
before calling function.
@param max_l Number of characters in string
*/
inline void set_data_type_char(uint32 max_l) {
assert(max_l <= MAX_CHAR_WIDTH);
max_length = max_l * collation.collation->mbmaxlen;
decimals = DECIMAL_NOT_SPECIFIED;
set_data_type(MYSQL_TYPE_STRING);
}
/**
Set the Item to be fixed length string. Like function above, but will
also set character set and collation.
@param max_l Maximum number of characters in string
@param cs Pointer to character set and collation struct
*/
inline void set_data_type_char(uint32 max_l, const CHARSET_INFO *cs) {
collation.collation = cs;
set_data_type_char(max_l);
}
/**
Set the Item to be of BLOB type.
@param type Actual blob data type
@param max_l Maximum number of characters in data type
*/
inline void set_data_type_blob(enum_field_types type, uint32 max_l) {
assert(type == MYSQL_TYPE_TINY_BLOB || type == MYSQL_TYPE_BLOB ||
type == MYSQL_TYPE_MEDIUM_BLOB || type == MYSQL_TYPE_LONG_BLOB);
set_data_type(type);
ulonglong max_width = max_l * collation.collation->mbmaxlen;
if (max_width > Field::MAX_LONG_BLOB_WIDTH) {
max_width = Field::MAX_LONG_BLOB_WIDTH;
}
max_length = max_width;
decimals = DECIMAL_NOT_SPECIFIED;
}
/// Set all type properties for Item of DATE type.
inline void set_data_type_date() {
set_data_type(MYSQL_TYPE_DATE);
collation.set_numeric();
decimals = 0;
max_length = MAX_DATE_WIDTH;
}
/**
Set all type properties for Item of TIME type.
@param fsp Fractional seconds precision
*/
inline void set_data_type_time(uint8 fsp) {
assert(fsp <= DATETIME_MAX_DECIMALS);
set_data_type(MYSQL_TYPE_TIME);
collation.set_numeric();
decimals = fsp;
max_length = MAX_TIME_WIDTH + fsp + (fsp > 0 ? 1 : 0);
}
/**
Set all properties for Item of DATETIME type.
@param fsp Fractional seconds precision
*/
inline void set_data_type_datetime(uint8 fsp) {
assert(fsp <= DATETIME_MAX_DECIMALS);
set_data_type(MYSQL_TYPE_DATETIME);
collation.set_numeric();
decimals = fsp;
max_length = MAX_DATETIME_WIDTH + fsp + (fsp > 0 ? 1 : 0);
}
/**
Set all properties for Item of TIMESTAMP type.
@param fsp Fractional seconds precision
*/
inline void set_data_type_timestamp(uint8 fsp) {
assert(fsp <= DATETIME_MAX_DECIMALS);
set_data_type(MYSQL_TYPE_TIMESTAMP);
collation.set_numeric();
decimals = fsp;
max_length = MAX_DATETIME_WIDTH + fsp + (fsp > 0 ? 1 : 0);
}
/**
Set the data type of the Item to be VECTOR.
*/
void set_data_type_vector(uint32 max_l) {
set_data_type(MYSQL_TYPE_VECTOR);
collation.set(&my_charset_bin, DERIVATION_IMPLICIT);
decimals = DECIMAL_NOT_SPECIFIED;
max_length = max_l;
}
/**
Set the data type of the Item to be GEOMETRY.
*/
void set_data_type_geometry() {
set_data_type(MYSQL_TYPE_GEOMETRY);
collation.set(&my_charset_bin, DERIVATION_IMPLICIT);
decimals = DECIMAL_NOT_SPECIFIED;
max_length = MAX_BLOB_WIDTH;
}
/**
Set the data type of the Item to be JSON.
*/
void set_data_type_json() {
set_data_type(MYSQL_TYPE_JSON);
collation.set(&my_charset_utf8mb4_bin, DERIVATION_IMPLICIT);
decimals = DECIMAL_NOT_SPECIFIED;
max_length = Field::MAX_LONG_BLOB_WIDTH;
}
/**
Set the data type of the Item to be YEAR.
*/
void set_data_type_year() {
set_data_type(MYSQL_TYPE_YEAR);
collation.set_numeric();
decimals = 0;
fix_char_length(4); // YYYY
unsigned_flag = true;
}
/**
Set the data type of the Item to be bit.
@param max_bits Maximum number of bits to store in this field.
*/
void set_data_type_bit(uint32 max_bits) {
set_data_type(MYSQL_TYPE_BIT);
collation.set_numeric();
max_length = max_bits;
unsigned_flag = true;
}
/**
Set data type properties of the item from the properties of another item.
@param item Item to set data type properties from.
*/
inline void set_data_type_from_item(const Item *item) {
set_data_type(item->data_type());
collation = item->collation;
max_length = item->max_length;
decimals = item->decimals;
unsigned_flag = item->unsigned_flag;
}
/**
Determine correct string field type, based on string length
@param max_bytes Maximum string size, in number of bytes
*/
static enum_field_types string_field_type(uint32 max_bytes) {
if (max_bytes > Field::MAX_MEDIUM_BLOB_WIDTH)
return MYSQL_TYPE_LONG_BLOB;
else if (max_bytes > Field::MAX_VARCHAR_WIDTH)
return MYSQL_TYPE_MEDIUM_BLOB;
else
return MYSQL_TYPE_VARCHAR;
}
/// Get the typelib information for an item of type set or enum
virtual TYPELIB *get_typelib() const { return nullptr; }
virtual Item_result cast_to_int_type() const { return result_type(); }
virtual enum Type type() const = 0;
bool aggregate_type(const char *name, Item **items, uint count);
/*
Return information about function monotonicity. See comment for
enum_monotonicity_info for details. This function can only be called
after fix_fields() call.
*/
virtual enum_monotonicity_info get_monotonicity_info() const {
return NON_MONOTONIC;
}
/*
Convert "func_arg $CMP$ const" half-interval into "FUNC(func_arg) $CMP2$
const2"
SYNOPSIS
val_int_endpoint()
left_endp false <=> The interval is "x < const" or "x <= const"
true <=> The interval is "x > const" or "x >= const"
incl_endp IN false <=> the comparison is '<' or '>'
true <=> the comparison is '<=' or '>='
OUT The same but for the "F(x) $CMP$ F(const)" comparison
DESCRIPTION
This function is defined only for unary monotonic functions. The caller
supplies the source half-interval
x $CMP$ const
The value of const is supplied implicitly as the value of this item's
argument, the form of $CMP$ comparison is specified through the
function's arguments. The call returns the result interval
F(x) $CMP2$ F(const)
passing back F(const) as the return value, and the form of $CMP2$
through the out parameter. NULL values are assumed to be comparable and
be less than any non-NULL values.
RETURN
The output range bound, which equal to the value of val_int()
- If the value of the function is NULL then the bound is the
smallest possible value of LLONG_MIN
*/
virtual longlong val_int_endpoint(bool left_endp [[maybe_unused]],
bool *incl_endp [[maybe_unused]]) {
assert(0);
return 0;
}
/* valXXX methods must return NULL or 0 or 0.0 if null_value is set. */
/*
Return double precision floating point representation of item.
SYNOPSIS
val_real()
RETURN
In case of NULL value return 0.0 and set null_value flag to true.
If value is not null null_value flag will be reset to false.
*/
virtual double val_real() = 0;
/*
Return integer representation of item.
SYNOPSIS
val_int()
RETURN
In case of NULL value return 0 and set null_value flag to true.
If value is not null null_value flag will be reset to false.
*/
virtual longlong val_int() = 0;
/**
Return date value of item in packed longlong format.
*/
virtual longlong val_date_temporal();
/**
Return time value of item in packed longlong format.
*/
virtual longlong val_time_temporal();
/**
Return date or time value of item in packed longlong format,
depending on item field type.
*/
longlong val_temporal_by_field_type() {
if (data_type() == MYSQL_TYPE_TIME) return val_time_temporal();
assert(is_temporal_with_date());
return val_date_temporal();
}
/**
Produces a key suitable for filesort. Most of the time, val_int() would
suffice, but for temporal values, the packed value (as sent to the handler)
is called for. It is also necessary that the value is in UTC. This function
supplies just that.
@return A sort key value.
*/
longlong int_sort_key() {
if (data_type() == MYSQL_TYPE_TIME) return val_time_temporal_at_utc();
if (is_temporal_with_date()) return val_date_temporal_at_utc();
return val_int();
}
/**
Get date or time value in packed longlong format.
Before conversion from MYSQL_TIME to packed format,
the MYSQL_TIME value is rounded to "dec" fractional digits.
*/
longlong val_temporal_with_round(enum_field_types type, uint8 dec);
/*
This is just a shortcut to avoid the cast. You should still use
unsigned_flag to check the sign of the item.
*/
inline ulonglong val_uint() { return (ulonglong)val_int(); }
/*
Return string representation of this item object.
SYNOPSIS
val_str()
str an allocated buffer this or any nested Item object can use to
store return value of this method.
NOTE
Buffer passed via argument should only be used if the item itself
doesn't have an own String buffer. In case when the item maintains
it's own string buffer, it's preferable to return it instead to
minimize number of mallocs/memcpys.
The caller of this method can modify returned string, but only in case
when it was allocated on heap, (is_alloced() is true). This allows
the caller to efficiently use a buffer allocated by a child without
having to allocate a buffer of it's own. The buffer, given to
val_str() as argument, belongs to the caller and is later used by the
caller at it's own choosing.
A few implications from the above:
- unless you return a string object which only points to your buffer
but doesn't manages it you should be ready that it will be
modified.
- even for not allocated strings (is_alloced() == false) the caller
can change charset (see Item_func_{typecast/binary}. XXX: is this
a bug?
- still you should try to minimize data copying and return internal
object whenever possible.
RETURN
In case of NULL value or error, return error_str() as this function will
check if the return value may be null, and it will either set null_value
to true and return nullptr or to false and it will return empty string.
If value is not null set null_value flag to false before returning it.
*/
virtual String *val_str(String *str) = 0;
/*
Returns string representation of this item in ASCII format.
SYNOPSIS
val_str_ascii()
str - similar to val_str();
NOTE
This method is introduced for performance optimization purposes.
1. val_str() result of some Items in string context
depends on @@character_set_results.
@@character_set_results can be set to a "real multibyte" character
set like UCS2, UTF16, UTF32. (We'll use only UTF32 in the examples
below for convenience.)
So the default string result of such functions
in these circumstances is real multi-byte character set, like UTF32.
For example, all numbers in string context
return result in @@character_set_results:
SELECT CONCAT(20010101); -> UTF32
We do sprintf() first (to get ASCII representation)
and then convert to UTF32;
So these kind "data sources" can use ASCII representation
internally, but return multi-byte data only because
@@character_set_results wants so.
Therefore, conversion from ASCII to UTF32 is applied internally.
2. Some other functions need in fact ASCII input.
For example,
inet_aton(), GeometryFromText(), Convert_TZ(), GET_FORMAT().
Similar, fields of certain type, like DATE, TIME,
when you insert string data into them, expect in fact ASCII input.
If they get non-ASCII input, for example UTF32, they
convert input from UTF32 to ASCII, and then use ASCII
representation to do further processing.
3. Now imagine we pass result of a data source of the first type
to a data destination of the second type.
What happens:
a. data source converts data from ASCII to UTF32, because
@@character_set_results wants so and passes the result to
data destination.
b. data destination gets UTF32 string.
c. data destination converts UTF32 string to ASCII,
because it needs ASCII representation to be able to handle data
correctly.
As a result we get two steps of unnecessary conversion:
From ASCII to UTF32, then from UTF32 to ASCII.
A better way to handle these situations is to pass ASCII
representation directly from the source to the destination.
This is why val_str_ascii() introduced.
RETURN
Similar to val_str()
*/
virtual String *val_str_ascii(String *str);
/*
Return decimal representation of item with fixed point.
SYNOPSIS
val_decimal()
decimal_buffer buffer which can be used by Item for returning value
(but can be not)
NOTE
Returned value should not be changed if it is not the same which was
passed via argument.
RETURN
Return pointer on my_decimal (it can be other then passed via argument)
if value is not NULL (null_value flag will be reset to false).
In case of NULL value it return 0 pointer and set null_value flag
to true.
*/
virtual my_decimal *val_decimal(my_decimal *decimal_buffer) = 0;
/*
Return boolean value of item.
RETURN
false value is false or NULL
true value is true (not equal to 0)
*/
virtual bool val_bool();
/**
Get a JSON value from an Item.
All subclasses that can return a JSON value, should override this
function. The function in the base class is not expected to be
called. If it is called, it most likely means that some subclass
is missing an override of val_json().
@param[in,out] result The resulting Json_wrapper.
@return false if successful, true on failure
*/
/* purecov: begin deadcode */
virtual bool val_json(Json_wrapper *result [[maybe_unused]]) {
assert(false);
my_error(ER_NOT_SUPPORTED_YET, MYF(0), "item type for JSON");
return error_json();
}
/* purecov: end */
/**
Calculate the filter contribution that is relevant for table
'filter_for_table' for this item.
@param thd Thread handler
@param filter_for_table The table we are calculating filter effect for
@param read_tables Tables earlier in the join sequence.
Predicates for table 'filter_for_table' that
rely on values from these tables can be part of
the filter effect.
@param fields_to_ignore Fields in 'filter_for_table' that should not
be part of the filter calculation. The filtering
effect of these fields is already part of the
calculation somehow (e.g. because there is a
predicate "col = <const>", and the optimizer
has decided to do ref access on 'col').
@param rows_in_table The number of rows in table 'filter_for_table'
@return the filtering effect (between 0 and 1) this
Item contributes with.
*/
virtual float get_filtering_effect(THD *thd [[maybe_unused]],
table_map filter_for_table
[[maybe_unused]],
table_map read_tables [[maybe_unused]],
const MY_BITMAP *fields_to_ignore
[[maybe_unused]],
double rows_in_table [[maybe_unused]]) {
// Filtering effect cannot be calculated for a table already read.
assert((read_tables & filter_for_table) == 0);
return COND_FILTER_ALLPASS;
}
/**
Get the value to return from val_json() in case of errors.
@see Item::error_bool
@return The value val_json() should return, which is true.
*/
bool error_json() {
null_value = m_nullable;
return true;
}
/**
Convert a non-temporal type to date
*/
bool get_date_from_non_temporal(MYSQL_TIME *ltime, my_time_flags_t fuzzydate);
/**
Convert a non-temporal type to time
*/
bool get_time_from_non_temporal(MYSQL_TIME *ltime);
protected:
/* Helper functions, see item_sum.cc */
String *val_string_from_real(String *str);
String *val_string_from_int(String *str);
String *val_string_from_decimal(String *str);
String *val_string_from_date(String *str);
String *val_string_from_datetime(String *str);
String *val_string_from_time(String *str);
my_decimal *val_decimal_from_real(my_decimal *decimal_value);
my_decimal *val_decimal_from_int(my_decimal *decimal_value);
my_decimal *val_decimal_from_string(my_decimal *decimal_value);
my_decimal *val_decimal_from_date(my_decimal *decimal_value);
my_decimal *val_decimal_from_time(my_decimal *decimal_value);
longlong val_int_from_decimal();
longlong val_int_from_date();
longlong val_int_from_time();
longlong val_int_from_datetime();
longlong val_int_from_string();
double val_real_from_decimal();
double val_real_from_string();
/**
Get the value to return from val_bool() in case of errors.
This function is called from val_bool() when an error has occurred
and we need to return something to abort evaluation of the
item. The expected pattern in val_bool() is
if (@<error condition@>)
{
my_error(...)
return error_bool();
}
@return The value val_bool() should return.
*/
bool error_bool() {
null_value = m_nullable;
return false;
}
/**
Get the value to return from val_int() in case of errors.
@see Item::error_bool
@return The value val_int() should return.
*/
int error_int() {
null_value = m_nullable;
return 0;
}
/**
Get the value to return from val_real() in case of errors.
@see Item::error_bool
@return The value val_real() should return.
*/
double error_real() {
null_value = m_nullable;
return 0.0;
}
/**
Get the value to return from get_date() in case of errors.
@see Item::error_bool
@return The true: the function failed.
*/
bool error_date() {
null_value = m_nullable;
return true;
}
/**
Get the value to return from get_time() in case of errors.
@see Item::error_bool
@return The true: the function failed.
*/
bool error_time() {
null_value = m_nullable;
return true;
}
public:
/**
Get the value to return from val_decimal() in case of errors.
@see Item::error_decimal
@return The value val_decimal() should return.
*/
my_decimal *error_decimal(my_decimal *decimal_value) {
null_value = m_nullable;
if (null_value) return nullptr;
my_decimal_set_zero(decimal_value);
return decimal_value;
}
/**
Get the value to return from val_str() in case of errors.
@see Item::error_bool
@return The value val_str() should return.
*/
String *error_str() {
null_value = m_nullable;
return null_value ? nullptr : make_empty_result();
}
protected:
/**
Gets the value to return from val_str() when returning a NULL value.
@return The value val_str() should return.
*/
String *null_return_str() {
assert(m_nullable);
null_value = true;
return nullptr;
}
/**
Convert val_str() to date in MYSQL_TIME
*/
bool get_date_from_string(MYSQL_TIME *ltime, my_time_flags_t flags);
/**
Convert val_real() to date in MYSQL_TIME
*/
bool get_date_from_real(MYSQL_TIME *ltime, my_time_flags_t flags);
/**
Convert val_decimal() to date in MYSQL_TIME
*/
bool get_date_from_decimal(MYSQL_TIME *ltime, my_time_flags_t flags);
/**
Convert val_int() to date in MYSQL_TIME
*/
bool get_date_from_int(MYSQL_TIME *ltime, my_time_flags_t flags);
/**
Convert get_time() from time to date in MYSQL_TIME
*/
bool get_date_from_time(MYSQL_TIME *ltime);
/**
Convert a numeric type to date
*/
bool get_date_from_numeric(MYSQL_TIME *ltime, my_time_flags_t fuzzydate);
/**
Convert val_str() to time in MYSQL_TIME
*/
bool get_time_from_string(MYSQL_TIME *ltime);
/**
Convert val_real() to time in MYSQL_TIME
*/
bool get_time_from_real(MYSQL_TIME *ltime);
/**
Convert val_decimal() to time in MYSQL_TIME
*/
bool get_time_from_decimal(MYSQL_TIME *ltime);
/**
Convert val_int() to time in MYSQL_TIME
*/
bool get_time_from_int(MYSQL_TIME *ltime);
/**
Convert date to time
*/
bool get_time_from_date(MYSQL_TIME *ltime);
/**
Convert datetime to time
*/
bool get_time_from_datetime(MYSQL_TIME *ltime);
/**
Convert a numeric type to time
*/
bool get_time_from_numeric(MYSQL_TIME *ltime);
virtual longlong val_date_temporal_at_utc() { return val_date_temporal(); }
virtual longlong val_time_temporal_at_utc() { return val_time_temporal(); }
public:
type_conversion_status save_time_in_field(Field *field);
type_conversion_status save_date_in_field(Field *field);
type_conversion_status save_str_value_in_field(Field *field, String *result);
/**
If this Item is being materialized into a temporary table, returns the
field that is being materialized into. (Typically, this is the
“result_field” members for items that have one.)
*/
virtual Field *get_tmp_table_field() {
DBUG_TRACE;
return nullptr;
}
/* This is also used to create fields in CREATE ... SELECT: */
virtual Field *tmp_table_field(TABLE *) { return nullptr; }
virtual const char *full_name() const {
return item_name.is_set() ? item_name.ptr() : "???";
}
/* bit map of tables used by item */
virtual table_map used_tables() const { return (table_map)0L; }
/**
Return table map of tables that can't be NULL tables (tables that are
used in a context where if they would contain a NULL row generated
by a LEFT or RIGHT join, the item would not be true).
This expression is used on WHERE item to determinate if a LEFT JOIN can be
converted to a normal join.
Generally this function should return used_tables() if the function
would return null if any of the arguments are null
As this is only used in the beginning of optimization, the value don't
have to be updated in update_used_tables()
*/
virtual table_map not_null_tables() const { return used_tables(); }
/**
Returns true if this is a simple constant item like an integer, not
a constant expression. Used in the optimizer to propagate basic constants.
It is assumed that val_xxx() does not modify the item's state for
such items. It is also assumed that val_str() can be called with nullptr
as argument as val_str() will return an internally cached const string.
*/
virtual bool basic_const_item() const { return false; }
/**
@returns true when a const item may be evaluated during resolving.
Only const items that are basic const items are evaluated when
resolving CREATE VIEW statements. For other statements, all
const items may be evaluated during resolving.
*/
bool may_eval_const_item(const THD *thd) const;
/**
@return cloned item if it is constant
@retval nullptr if this is not const
*/
virtual Item *clone_item() const { return nullptr; }
virtual cond_result eq_cmp_result() const { return COND_OK; }
inline uint float_length(uint decimals_par) const {
return decimals != DECIMAL_NOT_SPECIFIED ? (DBL_DIG + 2 + decimals_par)
: DBL_DIG + 8;
}
virtual uint decimal_precision() const;
inline int decimal_int_part() const {
return my_decimal_int_part(decimal_precision(), decimals);
}
/**
TIME precision of the item: 0..6
*/
virtual uint time_precision();
/**
DATETIME precision of the item: 0..6
*/
virtual uint datetime_precision();
/**
Returns true if item is constant, regardless of query evaluation state.
An expression is constant if it:
- refers no tables.
- refers no subqueries that refers any tables.
- refers no non-deterministic functions.
- refers no statement parameters.
- contains no group expression under rollup
*/
bool const_item() const { return (used_tables() == 0); }
/**
Returns true if item is constant during one query execution.
If const_for_execution() is true but const_item() is false, value is
not available before tables have been locked and parameters have been
assigned values. This applies to
- statement parameters
- non-dependent subqueries
- deterministic stored functions that contain SQL code.
For items where the default implementation of used_tables() and
const_item() are effective, const_item() will always return true.
*/
bool const_for_execution() const {
return !(used_tables() & ~INNER_TABLE_BIT);
}
/**
Return true if this is a const item that may be evaluated in
the current phase of statement processing.
- No evaluation is performed when analyzing a view, otherwise:
- Items that have the const_item() property can always be evaluated.
- Items that have the const_for_execution() property can be evaluated when
tables are locked (ie during optimization or execution).
This function should be used in the following circumstances:
- during preparation to check whether an item can be permanently transformed
- to check that an item is constant in functions that may be used in both
the preparation and optimization phases.
This function should not be used by code that is called during optimization
and/or execution only. Use const_for_execution() in this case.
*/
bool may_evaluate_const(const THD *thd) const;
/**
@returns true if this item is non-deterministic, which means that a
has a component that must be evaluated once per row in
execution of a JOIN query.
*/
bool is_non_deterministic() const { return used_tables() & RAND_TABLE_BIT; }
/**
@returns true if this item is an outer reference, usually this means that
it references a column that contained in a table located in
the FROM clause of an outer query block.
*/
bool is_outer_reference() const {
return used_tables() & OUTER_REF_TABLE_BIT;
}
/**
This method is used for to:
- to generate a view definition query (SELECT-statement);
- to generate a SQL-query for EXPLAIN EXTENDED;
- to generate a SQL-query to be shown in INFORMATION_SCHEMA;
- to generate a SQL-query that looks like a prepared statement for
query_rewrite
- debug.
For more information about view definition query, INFORMATION_SCHEMA
query and why they should be generated from the Item-tree, @see
mysql_register_view().
*/
virtual void print(const THD *, String *str, enum_query_type) const {
str->append(full_name());
}
void print_item_w_name(const THD *thd, String *,
enum_query_type query_type) const;
/**
Prints the item when it's part of ORDER BY and GROUP BY.
@param thd Thread handle
@param str String to print to
@param query_type How to format the item
@param used_alias The alias with which this item was referenced, or
nullptr if it was not referenced with an alias.
*/
void print_for_order(const THD *thd, String *str, enum_query_type query_type,
const char *used_alias) const;
/**
Updates used tables, not null tables information and accumulates
properties up the item tree, cf. used_tables_cache, not_null_tables_cache
and m_accum_properties.
TODO(sgunders): Consider just removing these caches; it causes a lot of bugs
(cache invalidation is known to be a complex problem), and the performance
benefits are dubious.
*/
virtual void update_used_tables() {}
virtual bool split_sum_func(THD *, Ref_item_array, mem_root_deque<Item *> *) {
return false;
}
/* Called for items that really have to be split */
bool split_sum_func2(THD *thd, Ref_item_array ref_item_array,
mem_root_deque<Item *> *fields, Item **ref,
bool skip_registered);
virtual bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) = 0;
virtual bool get_time(MYSQL_TIME *ltime) = 0;
/**
Get timestamp in "struct timeval" format.
@retval false on success
@retval true on error
*/
virtual bool get_timeval(my_timeval *tm, int *warnings);
/**
The method allows to determine nullness of a complex expression
without fully evaluating it, instead of calling val*() then
checking null_value. Used in Item_func_isnull/Item_func_isnotnull
and Item_sum_count/Item_sum_count_distinct.
Any item which can be NULL must implement this method.
@retval false if the expression is not NULL.
@retval true if the expression is NULL, or evaluation caused an error.
The null_value member is set according to the return value.
*/
virtual bool is_null() { return false; }
/**
Make sure the null_value member has a correct value.
null_value is set true also when evaluation causes error.
@returns false if success, true if error
*/
bool update_null_value();
/**
Apply the IS TRUE truth property, meaning that an UNKNOWN result and a
FALSE result are treated the same.
This property is applied e.g to all conditions in WHERE, HAVING and ON
clauses, and is recursively applied to operands of AND, OR
operators. Some items (currently AND and subquery predicates) may enable
special optimizations when they have this property.
*/
virtual void apply_is_true() {}
/*
set field of temporary table for Item which can be switched on temporary
table during query processing (grouping and so on). @see
Item_result_field.
*/
virtual void set_result_field(Field *) {}
virtual bool is_result_field() const { return false; }
virtual Field *get_result_field() const { return nullptr; }
virtual bool is_bool_func() const { return false; }
/*
Set value of aggregate function in case of no rows for grouping were found.
Also used for subqueries with outer references in SELECT list.
*/
virtual void no_rows_in_result() {}
virtual Item *copy_or_same(THD *) { return this; }
virtual Item *copy_andor_structure(THD *) { return this; }
/**
@returns the "real item" underlying the owner object. Used to strip away
Item_ref objects.
@note remember to implement both real_item() functions in sub classes!
*/
virtual Item *real_item() { return this; }
virtual const Item *real_item() const { return this; }
/**
If an Item is materialized in a temporary table, a different Item may have
to be used in the part of the query that runs after the materialization.
For instance, if the Item was an Item_field, the new Item_field needs to
point into the temporary table instead of the original one, but if, on the
other hand, the Item was a literal constant, it can be reused as-is.
This function encapsulates these policies for the different kinds of Items.
See also get_tmp_table_field().
TODO: Document how aggregate functions (Item_sum) are handled.
*/
virtual Item *get_tmp_table_item(THD *thd) { return copy_or_same(thd); }
static const CHARSET_INFO *default_charset();
virtual const CHARSET_INFO *compare_collation() const { return nullptr; }
/*
For backward compatibility, to make numeric
data types return "binary" charset in client-side metadata.
*/
virtual const CHARSET_INFO *charset_for_protocol() {
return result_type() == STRING_RESULT ? collation.collation
: &my_charset_bin;
}
/**
Traverses a tree of Items in prefix and/or postfix order.
Optionally walks into subqueries.
@param processor processor function to be invoked per item
returns true to abort traversal, false to continue
@param walk controls how to traverse the item tree
enum_walk::PREFIX: call processor before invoking
children enum_walk::POSTFIX: call processor after invoking children
enum_walk::SUBQUERY go down into subqueries
walk values are bit-coded and may be combined.
Omitting both enum_walk::PREFIX and enum_walk::POSTFIX
is undefined behaviour.
@param arg Optional pointer to a walk-specific object
@retval false walk succeeded
@retval true walk aborted
by agreement, an error may have been reported
*/
virtual bool walk(Item_processor processor, enum_walk walk [[maybe_unused]],
uchar *arg) {
return ((walk & enum_walk::PREFIX) && (this->*processor)(arg)) ||
((walk & enum_walk::POSTFIX) && (this->*processor)(arg));
}
/** @see WalkItem, CompileItem, TransformItem */
template <class T>
auto walk_helper_thunk(uchar *arg) {
return (*reinterpret_cast<std::remove_reference_t<T> *>(arg))(this);
}
/** See CompileItem */
template <class T>
auto analyze_helper_thunk(uchar **arg) {
return (*reinterpret_cast<std::remove_reference_t<T> *>(*arg))(this);
}
/**
Perform a generic transformation of the Item tree, by adding zero or
more additional Item objects to it.
@param transformer Transformer function
@param[in,out] arg Pointer to struct used by transformer function
@returns Returned item tree after transformation, NULL if error
Transformation is performed as follows:
@code
transform()
{
transform children if any;
return this->*some_transformer(...);
}
@endcode
Note that unlike Item::compile(), transform() does not support an analyzer
function, ie. all children are unconditionally invoked.
Item::transform() should handle all transformations during preparation.
Notice that all transformations are permanent; they are not rolled back.
Use Item::compile() to perform transformations during optimization.
*/
virtual Item *transform(Item_transformer transformer, uchar *arg);
/**
Perform a generic "compilation" of the Item tree, ie transform the Item tree
by adding zero or more Item objects to it.
@param analyzer Analyzer function, see details section
@param[in,out] arg_p Pointer to struct used by analyzer function
@param transformer Transformer function, see details section
@param[in,out] arg_t Pointer to struct used by transformer function
@returns Returned item tree after transformation, NULL if error
The process of this transformation is assumed to be as follows:
@code
compile()
{
if (this->*some_analyzer(...))
{
compile children if any;
return this->*some_transformer(...);
}
else
return this;
}
@endcode
i.e. analysis is performed top-down while transformation is done
bottom-up. If no transformation is applied, the item is returned unchanged.
A transformation error is indicated by returning a NULL pointer. Notice
that the analyzer function should never cause an error.
The function is supposed to be used during the optimization stage of
query execution. All new allocations are recorded using
THD::change_item_tree() so that they can be rolled back after execution.
@todo Pass THD to compile() function, thus no need to use current_thd.
*/
virtual Item *compile(Item_analyzer analyzer, uchar **arg_p,
Item_transformer transformer, uchar *arg_t) {
if ((this->*analyzer)(arg_p)) return ((this->*transformer)(arg_t));
return this;
}
virtual void traverse_cond(Cond_traverser traverser, void *arg,
traverse_order) {
(*traverser)(this, arg);
}
/*
This is used to get the most recent version of any function in
an item tree. The version is the version where a MySQL function
was introduced in. So any function which is added should use
this function and set the int_arg to maximum of the input data
and their own version info.
*/
virtual bool intro_version(uchar *) { return false; }
/// cleanup() item if it is resolved ('fixed').
bool cleanup_processor(uchar *) {
if (fixed) cleanup();
return false;
}
bool contains_item(uchar *arg) {
return *(pointer_cast<Item **>(arg)) == this;
}
virtual bool collect_item_field_processor(uchar *) { return false; }
virtual bool collect_item_field_or_ref_processor(uchar *) { return false; }
virtual bool collect_outer_field_processor(uchar *) { return false; }
class Collect_item_fields_or_refs : public Item_tree_walker {
public:
List<Item> *m_items;
Collect_item_fields_or_refs(List<Item> *fields_or_refs)
: m_items(fields_or_refs) {}
Collect_item_fields_or_refs(const Collect_item_fields_or_refs &) = delete;
Collect_item_fields_or_refs &operator=(
const Collect_item_fields_or_refs &) = delete;
friend class Item_sum;
friend class Item_field;
friend class Item_ref;
};
class Collect_item_fields_or_view_refs : public Item_tree_walker {
public:
List<Item> *m_item_fields_or_view_refs;
Query_block *m_transformed_block;
/// Used to compute \c Item_field's \c m_protected_by_any_value. Pushed and
/// popped when walking arguments of \c Item_func_any_value.a
uint m_any_value_level{0};
Collect_item_fields_or_view_refs(List<Item> *fields_or_vr,
Query_block *transformed_block)
: m_item_fields_or_view_refs(fields_or_vr),
m_transformed_block(transformed_block) {}
Collect_item_fields_or_view_refs(const Collect_item_fields_or_view_refs &) =
delete;
Collect_item_fields_or_view_refs &operator=(
const Collect_item_fields_or_view_refs &) = delete;
friend class Item_sum;
friend class Item_field;
friend class Item_default_value;
friend class Item_view_ref;
};
/**
Collects fields and view references that have the qualifying table
in the specified query block.
*/
virtual bool collect_item_field_or_view_ref_processor(uchar *) {
return false;
}
/**
Item::walk function. Set bit in table->tmp_set for all fields in
table 'arg' that are referred to by the Item.
*/
virtual bool add_field_to_set_processor(uchar *) { return false; }
/// A processor to handle the select lex visitor framework.
virtual bool visitor_processor(uchar *arg);
/**
Item::walk function. Set bit in table->cond_set for all fields of
all tables that are referred to by the Item.
*/
virtual bool add_field_to_cond_set_processor(uchar *) { return false; }
/**
Visitor interface for removing all column expressions (Item_field) in
this expression tree from a bitmap. @see walk()
@param arg A MY_BITMAP* cast to unsigned char*, where the bits represent
Field::field_index values.
*/
virtual bool remove_column_from_bitmap(uchar *arg [[maybe_unused]]) {
return false;
}
virtual bool find_item_in_field_list_processor(uchar *) { return false; }
virtual bool change_context_processor(uchar *) { return false; }
virtual bool find_item_processor(uchar *arg) { return this == (void *)arg; }
virtual bool is_non_const_over_literals(uchar *) {
return !basic_const_item();
}
/// Is this an Item_field which references the given Field argument?
virtual bool find_field_processor(uchar *) { return false; }
/// Wrap incompatible arguments in CAST nodes to the expected data types
virtual bool cast_incompatible_args(uchar *) { return false; }
/**
Mark underlying field in read or write map of a table.
@param arg Mark_field object
*/
virtual bool mark_field_in_map(uchar *arg [[maybe_unused]]) { return false; }
protected:
/**
Helper function for mark_field_in_map(uchar *arg).
@param mark_field Mark_field object
@param field Field to be marked for read/write
*/
static inline bool mark_field_in_map(Mark_field *mark_field, Field *field) {
TABLE *table = mark_field->table;
if (table != nullptr && table != field->table) return false;
table = field->table;
table->mark_column_used(field, mark_field->mark);
return false;
}
public:
/**
Reset execution state for such window function types
as determined by arg
@param arg pointing to a bool which, if true, says to reset state
for framing window function, else for non-framing
*/
virtual bool reset_wf_state(uchar *arg [[maybe_unused]]) { return false; }
/**
Return used table information for the specified query block (level).
For a field that is resolved from this query block, return the table number.
For a field that is resolved from a query block outer to the specified one,
return OUTER_REF_TABLE_BIT
@param[in,out] arg pointer to an instance of class Used_tables, which is
constructed with the query block as argument.
The used tables information is accumulated in the field
used_tables in this class.
@note This function is used to update used tables information after
merging a query block (a subquery) with its parent.
*/
virtual bool used_tables_for_level(uchar *arg [[maybe_unused]]) {
return false;
}
/**
Check privileges.
@param thd thread handle
*/
virtual bool check_column_privileges(uchar *thd [[maybe_unused]]) {
return false;
}
virtual bool inform_item_in_cond_of_tab(uchar *) { return false; }
/**
Bind objects from the current execution context to field objects in
item trees. Typically used to bind Field objects from TABLEs to
Item_field objects.
*/
virtual void bind_fields() {}
/**
Context object for (functions that override)
Item::clean_up_after_removal().
*/
class Cleanup_after_removal_context final : public Item_tree_walker {
public:
Cleanup_after_removal_context(Query_block *root) : m_root(root) {
assert(root != nullptr);
}
Query_block *get_root() { return m_root; }
private:
/**
Pointer to Cleanup_after_removal_context containing from which
select the walk started, i.e., the Query_block that contained the clause
that was removed.
*/
Query_block *const m_root;
friend class Item;
friend class Item_func_eq;
friend class Item_sum;
friend class Item_subselect;
friend class Item_ref;
};
/**
Clean up after removing the item from the item tree.
param arg pointer to a Cleanup_after_removal_context object
@todo: If class ORDER is refactored so that all indirect
grouping/ordering expressions are represented with Item_ref
objects, all implementations of cleanup_after_removal() except
the one for Item_ref can be removed.
*/
virtual bool clean_up_after_removal(uchar *arg);
/// @see Distinct_check::check_query()
virtual bool aggregate_check_distinct(uchar *) { return false; }
/// @see Group_check::check_query()
virtual bool aggregate_check_group(uchar *) { return false; }
/// @see Group_check::analyze_conjunct()
virtual bool is_strong_side_column_not_in_fd(uchar *) { return false; }
/// @see Group_check::is_in_fd_of_underlying()
virtual bool is_column_not_in_fd(uchar *) { return false; }
virtual Bool3 local_column(const Query_block *) const {
return Bool3::false3();
}
/**
Minion class under \c Collect_scalar_subquery_info ("Css"). Information
about one scalar subquery being considered for transformation
*/
struct Css_info {
/// set of locations
int8 m_locations{0};
/// the scalar subquery
Item_singlerow_subselect *item{nullptr};
table_map m_correlation_map{0};
/// Where did we find item above? Used when \c m_location == \c L_JOIN_COND,
/// nullptr for other locations.
Item *m_join_condition{nullptr};
/// If true, we can forego cardinality checking of the derived table
bool m_implicitly_grouped_and_no_union{false};
/// If true, add a COALESCE around replaced subquery: used for implicitly
/// grouped COUNT() in subquery select list when subquery is correlated
bool m_add_coalesce{false};
/// Set iff \c m_add_coalesce is true: we may get a NULL anyway even for
/// COUNT if a HAVING clause is false in the subquery.
bool m_add_having_compensation{false};
/// Index of the having expression copied to select list
uint m_having_idx{0};
};
/**
Context struct used by walk method collect_scalar_subqueries to
accumulate information about scalar subqueries found.
In: m_location of expression walked, m_join_condition_context
Out: m_list
*/
struct Collect_scalar_subquery_info : public Item_tree_walker {
enum Location { L_SELECT = 1, L_WHERE = 2, L_HAVING = 4, L_JOIN_COND = 8 };
/// accumulated all scalar subqueries found
std::vector<Css_info> m_list;
/// we are currently looking at this kind of clause, cf. enum Location
int8 m_location{0};
Item *m_join_condition_context{nullptr};
bool m_collect_unconditionally{false};
Collect_scalar_subquery_info() = default;
friend class Item_sum;
friend class Item_singlerow_subselect;
};
virtual bool collect_scalar_subqueries(uchar *) { return false; }
virtual bool collect_grouped_aggregates(uchar *) { return false; }
virtual bool collect_subqueries(uchar *) { return false; }
virtual bool update_depended_from(uchar *) { return false; }
/**
Check if an aggregate is referenced from within the GROUP BY
clause of the query block in which it is aggregated. Such
references will be rejected.
@see Item_ref::fix_fields()
@retval true if this is an aggregate which is referenced from
the GROUP BY clause of the aggregating query block
@retval false otherwise
*/
virtual bool has_aggregate_ref_in_group_by(uchar *) { return false; }
bool visit_all_analyzer(uchar **) { return true; }
virtual bool cache_const_expr_analyzer(uchar **cache_item);
Item *cache_const_expr_transformer(uchar *item);
virtual bool equality_substitution_analyzer(uchar **) { return false; }
virtual Item *equality_substitution_transformer(uchar *) { return this; }
/**
Check if a partition function is allowed.
@return whether a partition function is not accepted
@details
check_partition_func_processor is used to check if a partition function
uses an allowed function. An allowed function will always ensure that
X=Y guarantees that also part_function(X)=part_function(Y) where X is
a set of partition fields and so is Y. The problems comes mainly from
character sets where two equal strings can be quite unequal. E.g. the
german character for double s is equal to 2 s.
The default is that an item is not allowed
in a partition function. Allowed functions
can never depend on server version, they cannot depend on anything
related to the environment. They can also only depend on a set of
fields in the table itself. They cannot depend on other tables and
cannot contain any queries and cannot contain udf's or similar.
If a new Item class is defined and it inherits from a class that is
allowed in a partition function then it is very important to consider
whether this should be inherited to the new class. If not the function
below should be defined in the new Item class.
The general behaviour is that most integer functions are allowed.
If the partition function contains any multi-byte collations then
the function check_part_func_fields will report an error on the
partition function independent of what functions are used. So the
only character sets allowed are single character collation and
even for those only a limited set of functions are allowed. The
problem with multi-byte collations is that almost every string
function has the ability to change things such that two strings
that are equal will not be equal after manipulated by a string
function. E.g. two strings one contains a double s, there is a
special german character that is equal to two s. Now assume a
string function removes one character at this place, then in
one the double s will be removed and in the other there will
still be one s remaining and the strings are no longer equal
and thus the partition function will not sort equal strings into
the same partitions.
So the check if a partition function is valid is two steps. First
check that the field types are valid, next check that the partition
function is valid. The current set of partition functions valid
assumes that there are no multi-byte collations amongst the partition
fields.
*/
virtual bool check_partition_func_processor(uchar *) { return true; }
virtual bool subst_argument_checker(uchar **arg) {
if (*arg) *arg = nullptr;
return true;
}
virtual bool explain_subquery_checker(uchar **) { return true; }
virtual Item *explain_subquery_propagator(uchar *) { return this; }
virtual Item *equal_fields_propagator(uchar *) { return this; }
// Mark the item to not be part of substitution.
virtual bool disable_constant_propagation(uchar *) { return false; }
struct Replace_equal {
// Stack of pointers to enclosing functions
List<Item_func> stack;
};
virtual Item *replace_equal_field(uchar *) { return this; }
virtual bool replace_equal_field_checker(uchar **) { return true; }
/*
Check if an expression value has allowed arguments, like DATE/DATETIME
for date functions. Also used by partitioning code to reject
timezone-dependent expressions in a (sub)partitioning function.
*/
virtual bool check_valid_arguments_processor(uchar *) { return false; }
/**
Check if this item is allowed for a virtual column or inside a
default expression. Should be overridden in child classes.
@param[in,out] args Due to the limitation of Item::walk()
it is declared as a pointer to uchar, underneath there's a actually a
structure of type Check_function_as_value_generator_parameters.
It is used mainly in Item_field.
@returns true if function is not accepted
*/
virtual bool check_function_as_value_generator(uchar *args);
/**
Check if a generated expression depends on DEFAULT function with
specific column name as argument.
@param[in] args Name of column used as DEFAULT function argument.
@returns false if the function is not DEFAULT(args), otherwise true.
*/
virtual bool check_gcol_depend_default_processor(uchar *args
[[maybe_unused]]) {
return false;
}
/**
Check if all the columns present in this expression are from the
derived table. Used in determining if a condition can be pushed
down to derived table.
*/
virtual bool is_valid_for_pushdown(uchar *arg [[maybe_unused]]) {
// A generic item cannot be pushed down unless it's a constant
// which does not have a subquery.
return !const_item() || has_subquery();
}
/**
Check if all the columns present in this expression are present
in PARTITION clause of window functions of the derived table.
Used in checking if a condition can be pushed down to derived table.
*/
virtual bool check_column_in_window_functions(uchar *arg [[maybe_unused]]) {
return false;
}
/**
Check if all the columns present in this expression are present
in GROUP BY clause of the derived table. Used in checking if
a condition can be pushed down to derived table.
*/
virtual bool check_column_in_group_by(uchar *arg [[maybe_unused]]) {
return false;
}
/**
Assuming this expression is part of a condition that would be pushed to the
WHERE clause of a materialized derived table, replace, in this expression,
each derived table's column with a clone of the expression lying under it
in the derived table's definition. We replace with a clone, because the
condition can be pushed further down in case of nested derived tables.
*/
virtual Item *replace_with_derived_expr(uchar *arg [[maybe_unused]]) {
return this;
}
/**
Assuming this expression is part of a condition that would be pushed to the
HAVING clause of a materialized derived table, replace, in this expression,
each derived table's column with a reference to the expression lying under
it in the derived table's definition. Unlike replace_with_derived_expr, a
clone is not used because HAVING condition will not be pushed further
down in case of nested derived tables.
*/
virtual Item *replace_with_derived_expr_ref(uchar *arg [[maybe_unused]]) {
return this;
}
/**
Assuming this expression is part of a condition that would be pushed to a
materialized derived table, replace, in this expression, each view reference
with a clone of the expression in merged derived table's definition.
We replace with a clone, because the referenced item in a view reference
is shared by all the view references to that expression.
*/
virtual Item *replace_view_refs_with_clone(uchar *arg [[maybe_unused]]) {
return this;
}
/*
For SP local variable returns pointer to Item representing its
current value and pointer to current Item otherwise.
*/
virtual Item *this_item() { return this; }
virtual const Item *this_item() const { return this; }
/*
For SP local variable returns address of pointer to Item representing its
current value and pointer passed via parameter otherwise.
*/
virtual Item **this_item_addr(THD *, Item **addr_arg) { return addr_arg; }
// Row emulation
virtual uint cols() const { return 1; }
virtual Item *element_index(uint) { return this; }
virtual Item **addr(uint) { return nullptr; }
virtual bool check_cols(uint c);
// It is not row => null inside is impossible
virtual bool null_inside() { return false; }
// used in row subselects to get value of elements
virtual void bring_value() {}
Field *tmp_table_field_from_field_type(TABLE *table, bool fixed_length) const;
virtual Item_field *field_for_view_update() { return nullptr; }
/**
Informs an item that it is wrapped in a truth test, in case it wants to
transforms itself to implement this test by itself.
@param thd Thread handle
@param test Truth test
*/
virtual Item *truth_transformer(THD *thd [[maybe_unused]],
Bool_test test [[maybe_unused]]) {
return nullptr;
}
virtual Item *update_value_transformer(uchar *) { return this; }
struct Item_replacement {
Query_block *m_trans_block; ///< Transformed query block
Query_block *m_curr_block; ///< Transformed query block or a contained
///< subquery. Pushed when diving into
///< subqueries.
Item_replacement(Query_block *transformed_block, Query_block *current_block)
: m_trans_block(transformed_block), m_curr_block(current_block) {}
};
struct Item_field_replacement : Item_replacement {
Field *m_target; ///< The field to be replaced
Item_field *m_item; ///< The replacement field
///< replacement field iff outer ref
Item_field *m_outer_field{nullptr};
enum class Mode {
CONFLATE, // include both Item_field and Item_default_value
FIELD, // ignore Item_default_value
DEFAULT_VALUE // ignore Item_field
};
Mode m_default_value;
Item_field_replacement(Field *target, Item_field *item, Query_block *select,
Mode default_value = Mode::CONFLATE)
: Item_replacement(select, select),
m_target(target),
m_item(item),
m_default_value(default_value) {}
};
struct Item_func_call_replacement : Item_replacement {
Item_func *m_target; ///< The function call to be replaced
Item_field *m_item; ///< The replacement field
Item_func_call_replacement(Item_func *func_target, Item_field *item,
Query_block *select)
: Item_replacement(select, select),
m_target(func_target),
m_item(item) {}
};
struct Item_view_ref_replacement : Item_replacement {
Item *m_target; ///< The item identifying the view_ref to be replaced
Field *m_field; ///< The replacement field
///< subquery. Pushed when diving into
///< subqueries.
Item_view_ref_replacement(Item *target, Field *field, Query_block *select)
: Item_replacement(select, select), m_target(target), m_field(field) {}
};
struct Aggregate_replacement {
Item_sum *m_target;
Item_field *m_replacement;
Aggregate_replacement(Item_sum *target, Item_field *replacement)
: m_target(target), m_replacement(replacement) {}
};
/**
When walking the item tree seeing an Item_singlerow_subselect matching
a target, replace it with a substitute field used when transforming
scalar subqueries into derived tables. Cf.
Query_block::transform_scalar_subqueries_to_join_with_derived.
*/
virtual Item *replace_scalar_subquery(uchar *) { return this; }
/**
Transform processor used by Query_block::transform_grouped_to_derived
to replace fields which used to be at the transformed query block
with corresponding fields in the new derived table containing the grouping
operation of the original transformed query block.
*/
virtual Item *replace_item_field(uchar *) { return this; }
virtual Item *replace_func_call(uchar *) { return this; }
virtual Item *replace_item_view_ref(uchar *) { return this; }
virtual Item *replace_aggregate(uchar *) { return this; }
virtual Item *replace_outer_ref(uchar *) { return this; }
struct Aggregate_ref_update {
Item_sum *m_target;
Query_block *m_owner;
Aggregate_ref_update(Item_sum *target, Query_block *owner)
: m_target(target), m_owner(owner) {}
};
/**
A walker processor overridden by Item_aggregate_ref, q.v.
*/
virtual bool update_aggr_refs(uchar *) { return false; }
/**
Convert constant string in this object into the specified character set.
@param thd thread handler
@param tocs target character set
@param ignore_errors if true, ignore errors in conversion
@returns pointer to new Item containing converted character string
= NULL: If conversion failed
*/
Item *convert_charset(THD *thd, const CHARSET_INFO *tocs,
bool ignore_errors = false);
/**
Delete this item.
Note that item must have been cleanup up by calling Item::cleanup().
*/
void delete_self() { delete this; }
/** @return whether the item is local to a stored procedure */
virtual bool is_splocal() const { return false; }
/*
Return Settable_routine_parameter interface of the Item. Return 0
if this Item is not Settable_routine_parameter.
*/
virtual Settable_routine_parameter *get_settable_routine_parameter() {
return nullptr;
}
inline bool is_temporal_with_date() const {
return is_temporal_type_with_date(real_type_to_type(data_type()));
}
inline bool is_temporal_with_date_and_time() const {
return is_temporal_type_with_date_and_time(real_type_to_type(data_type()));
}
inline bool is_temporal_with_time() const {
return is_temporal_type_with_time(real_type_to_type(data_type()));
}
inline bool is_temporal() const {
return is_temporal_type(real_type_to_type(data_type()));
}
/**
Check whether this and the given item has compatible comparison context.
Used by the equality propagation. See Item_field::equal_fields_propagator.
@return
true if the context is the same or if fields could be
compared as DATETIME values by the Arg_comparator.
false otherwise.
*/
inline bool has_compatible_context(Item *item) const {
// If no explicit context has been set, assume the same type as the item
const Item_result this_context =
cmp_context == INVALID_RESULT ? result_type() : cmp_context;
const Item_result other_context = item->cmp_context == INVALID_RESULT
? item->result_type()
: item->cmp_context;
// Check if both items have the same context
if (this_context == other_context) {
return true;
}
/* DATETIME comparison context. */
if (is_temporal_with_date())
return item->is_temporal_with_date() || other_context == STRING_RESULT;
if (item->is_temporal_with_date())
return is_temporal_with_date() || this_context == STRING_RESULT;
return false;
}
virtual Field::geometry_type get_geometry_type() const {
return Field::GEOM_GEOMETRY;
}
String *check_well_formed_result(String *str, bool send_error, bool truncate);
bool eq_by_collation(Item *item, const CHARSET_INFO *cs);
CostOfItem cost() const {
m_cost.Compute(*this);
return m_cost;
}
/**
@return maximum number of characters that this Item can store
If Item is of string or blob type, return max string length in bytes
divided by bytes per character, otherwise return max_length.
@todo - check if collation for other types should have mbmaxlen = 1
*/
uint32 max_char_length() const {
/*
Length of e.g. 5.5e5 in an expression such as GREATEST(5.5e5, '5') is 5
(length of that string) although length of the actual value is 6.
Return MAX_DOUBLE_STR_LENGTH to prevent truncation of data without having
to evaluate the value of the item.
*/
const uint32 max_len =
data_type() == MYSQL_TYPE_DOUBLE ? MAX_DOUBLE_STR_LENGTH : max_length;
if (result_type() == STRING_RESULT)
return max_len / collation.collation->mbmaxlen;
return max_len;
}
uint32 max_char_length(const CHARSET_INFO *cs) const {
if (cs == &my_charset_bin && result_type() == STRING_RESULT) {
return max_length;
}
return max_char_length();
}
inline void fix_char_length(uint32 max_char_length_arg) {
max_length = char_to_byte_length_safe(max_char_length_arg,
collation.collation->mbmaxlen);
}
/*
Return true if the item points to a column of an outer-joined table.
*/
virtual bool is_outer_field() const {
assert(fixed);
return false;
}
/**
Check if an item either is a blob field, or will be represented as a BLOB
field if a field is created based on this item.
@retval true If a field based on this item will be a BLOB field,
@retval false Otherwise.
*/
bool is_blob_field() const;
/// @returns number of references to an item.
uint reference_count() const { return m_ref_count; }
/// Increment reference count
void increment_ref_count() {
assert(!m_abandoned);
++m_ref_count;
}
/// Decrement reference count
uint decrement_ref_count() {
assert(m_ref_count > 0);
if (--m_ref_count == 0) m_abandoned = true;
return m_ref_count;
}
protected:
/// Set accumulated properties for an Item
void set_accum_properties(const Item *item) {
m_accum_properties = item->m_accum_properties;
}
/// Add more accumulated properties to an Item
void add_accum_properties(const Item *item) {
m_accum_properties |= item->m_accum_properties;
}
/// Set the "has subquery" property
void set_subquery() { m_accum_properties |= PROP_SUBQUERY; }
/// Set the "has stored program" property
void set_stored_program() { m_accum_properties |= PROP_STORED_PROGRAM; }
public:
/// @return true if this item or any of its descendants contains a subquery.
bool has_subquery() const { return m_accum_properties & PROP_SUBQUERY; }
/// @return true if this item or any of its descendants refers a stored func.
bool has_stored_program() const {
return m_accum_properties & PROP_STORED_PROGRAM;
}
/// @return true if this item or any of its descendants is an aggregated func.
bool has_aggregation() const { return m_accum_properties & PROP_AGGREGATION; }
/// Set the "has aggregation" property
void set_aggregation() { m_accum_properties |= PROP_AGGREGATION; }
/// Reset the "has aggregation" property
void reset_aggregation() { m_accum_properties &= ~PROP_AGGREGATION; }
/// @return true if this item or any of its descendants is a window func.
bool has_wf() const { return m_accum_properties & PROP_WINDOW_FUNCTION; }
/// Set the "has window function" property
void set_wf() { m_accum_properties |= PROP_WINDOW_FUNCTION; }
/**
@return true if this item or any of its descendants within the same query
has a reference to a GROUP BY modifier (such as ROLLUP)
*/
bool has_grouping_set_dep() const {
return (m_accum_properties & PROP_HAS_GROUPING_SET_DEP);
}
/**
Set the property: this item (tree) contains a reference to a GROUP BY
modifier (such as ROLLUP)
*/
void set_group_by_modifier() {
m_accum_properties |= PROP_HAS_GROUPING_SET_DEP;
}
/**
@return true if this item or any of underlying items is a GROUPING function
*/
bool has_grouping_func() const {
return m_accum_properties & PROP_GROUPING_FUNC;
}
/// Set the property: this item is a call to GROUPING
void set_grouping_func() { m_accum_properties |= PROP_GROUPING_FUNC; }
/// Whether this Item was created by the IN->EXISTS subquery transformation
virtual bool created_by_in2exists() const { return false; }
void mark_subqueries_optimized_away() {
if (has_subquery())
walk(&Item::subq_opt_away_processor, enum_walk::POSTFIX, nullptr);
}
/**
Analyzer function for GC substitution. @see substitute_gc()
*/
virtual bool gc_subst_analyzer(uchar **) { return false; }
/**
Transformer function for GC substitution. @see substitute_gc()
*/
virtual Item *gc_subst_transformer(uchar *) { return this; }
/**
A processor that replaces any Fields with a Create_field_wrapper. This
will allow us to resolve functions during CREATE TABLE, where we only have
Create_field available and not Field. Used for functional index
implementation.
*/
virtual bool replace_field_processor(uchar *) { return false; }
/**
Check if this item is of a type that is eligible for GC
substitution. All items that belong to subclasses of Item_func are
eligible for substitution. @see substitute_gc()
Item_fields can also be eligible if they are given as an argument to
a function that takes an array (the field can be substituted with a
generated column that backs a multi-valued index on that field).
@param array true if the item is an argument to a function that takes an
array, or false otherwise
@return true if the expression is eligible for substitution, false otherwise
*/
bool can_be_substituted_for_gc(bool array = false) const;
void aggregate_float_properties(enum_field_types type, Item **items,
uint nitems);
void aggregate_decimal_properties(Item **items, uint nitems);
void aggregate_temporal_properties(enum_field_types type, Item **items,
uint nitems);
bool aggregate_string_properties(enum_field_types type, const char *name,
Item **items, uint nitems);
void aggregate_bit_properties(Item **items, uint nitems);
/**
This function applies only to Item_field objects referred to by an Item_ref
object that has been marked as a const_item.
@param arg Keep track of whether an Item_ref refers to an Item_field.
*/
virtual bool repoint_const_outer_ref(uchar *arg [[maybe_unused]]) {
return false;
}
virtual bool strip_db_table_name_processor(uchar *) { return false; }
/**
Compute the cost of evaluating this Item.
@param root_cost The cost object to which the cost should be added.
*/
virtual void compute_cost(CostOfItem *root_cost [[maybe_unused]]) const {}
bool is_abandoned() const { return m_abandoned; }
private:
virtual bool subq_opt_away_processor(uchar *) { return false; }
public: // Start of data fields
/**
Intrusive list pointer for free list. If not null, points to the next
Item on some Query_arena's free list. For instance, stored procedures
have their own Query_arena's.
@see Query_arena::free_list
*/
Item *next_free;
protected:
/// str_values's main purpose is to cache the value in save_in_field
String str_value;
public:
/**
Character set and collation properties assigned for this Item.
Used if Item represents a character string expression.
*/
DTCollation collation;
Item_name_string item_name; ///< Name from query
Item_name_string orig_name; ///< Original item name (if it was renamed)
/**
Maximum length of result of evaluating this item, in number of bytes.
- For character or blob data types, max char length multiplied by max
character size (collation.mbmaxlen).
- For decimal type, it is the precision in digits plus sign (unless
unsigned) plus decimal point (unless it has zero decimals).
- For other numeric types, the default or specific display length.
- For date/time types, the display length (10 for DATE, 10 + optional FSP
for TIME, 19 + optional fsp for datetime/timestamp).
- For bit, the number of bits.
- For enum, the string length of the widest enum element.
- For set, the sum of the string length of each set element plus separators.
- For geometry, the maximum size of a BLOB (it's underlying storage type).
- For json, the maximum size of a BLOB (it's underlying storage type).
*/
uint32 max_length; ///< Maximum length, in bytes
enum item_marker ///< Values for member 'marker'
{
MARKER_NONE = 0,
/// When contextualization or itemization adds an implicit comparison '0<>'
/// (see make_condition()), to record that this Item_func_ne was created for
/// this purpose; this value is tested during resolution.
MARKER_IMPLICIT_NE_ZERO = 1,
/// When doing constant propagation (e.g. change_cond_ref_to_const(), to
/// remember that we have already processed the item.
MARKER_CONST_PROPAG = 2,
/// When creating an internal temporary table: marking group by
/// fields
MARKER_GROUP_BY_BIT = 4,
/// When analyzing functional dependencies for only_full_group_by (says
/// whether a nullable column can be treated at not nullable).
MARKER_FUNC_DEP_NOT_NULL = 5,
/// When we change DISTINCT to GROUP BY: used for book-keeping of
/// fields.
MARKER_DISTINCT_GROUP = 6,
/// When pushing conditions down to derived table: it says a condition
/// contains only derived table's columns.
MARKER_COND_DERIVED_TABLE = 7,
/// Used during traversal to avoid deleting an item twice.
MARKER_TRAVERSAL = 8,
/// When pushing index conditions: it says whether a condition uses only
/// indexed columns.
MARKER_ICP_COND_USES_INDEX_ONLY = 10
};
/**
This member has several successive meanings, depending on the phase we're
in (@see item_marker).
The important property is that a phase must have a value (or few values)
which is reserved for this phase. If it wants to set "marked", it assigns
the value; it it wants to test if it is marked, it tests marker !=
value. If the value has been assigned and the phase wants to cancel it can
set marker to MARKER_NONE, which is a magic number which no phase
reserves.
A phase can expect 'marker' to be MARKER_NONE at the start of execution of
a normal statement, at the start of preparation of a PS, and at the start
of execution of a PS.
A phase should not expect marker's value to survive after the phase's
end - as a following phase may change it.
*/
item_marker marker;
Item_result cmp_context; ///< Comparison context
private:
/**
Number of references to this item. It is used for two purposes:
1. When eliminating redundant expressions, the reference count is used
to tell how many Item_ref objects that point to an item. When a
sub-tree of items is eliminated, it is traversed and any item that
is referenced from an Item_ref has its reference count decremented.
Only when the reference count reaches zero is the item actually deleted.
2. Keeping track of unused expressions selected from merged derived tables.
An item that is added to the select list of a query block has its
reference count set to 1. Any references from outer query blocks are
through Item_ref objects, thus they will cause the reference count
to be incremented. At end of resolving, the reference counts of all
items in select list of merged derived tables are decremented, thus
if the reference count becomes zero, the expression is known to
be unused and can be removed.
*/
uint m_ref_count{0};
bool m_abandoned{false}; ///< true if item has been fully de-referenced
const bool is_parser_item; ///< true if allocated directly by parser
uint8 m_data_type; ///< Data type assigned to Item
/**
The cost of evaluating this item. This is only needed for predicates,
therefore we use lazy evaluation.
*/
mutable CostOfItem m_cost;
public:
bool fixed; ///< True if item has been resolved
/**
Number of decimals in result when evaluating this item
- For integer type, always zero.
- For decimal type, number of decimals.
- For float type, it may be DECIMAL_NOT_SPECIFIED
- For time, datetime and timestamp, number of decimals in fractional second
- For string types, may be decimals of cast source or DECIMAL_NOT_SPECIFIED
*/
uint8 decimals;
bool is_nullable() const { return m_nullable; }
void set_nullable(bool nullable) { m_nullable = nullable; }
private:
/**
True if this item may hold the NULL value(if null_value may be set to true).
For items that represent rows, it is true if one of the columns
may be null.
For items that represent scalar or row subqueries, it is true if
one of the returned columns could be null, or if the subquery
could return zero rows.
It is worth noting that this information is correct only until
equality propagation has been run by the optimization phase.
Indeed, consider:
select * from t1, t2,t3 where t1.pk=t2.a and t1.pk+1...
the '+' is not nullable as t1.pk is not nullable;
but if the optimizer chooses plan is t2-t3-t1, then, due to equality
propagation it will replace t1.pk in '+' with t2.a (as t2 is before t1
in plan), making the '+' capable of returning NULL when t2.a is NULL.
*/
bool m_nullable;
public:
bool null_value; ///< True if item is null
bool unsigned_flag;
bool m_is_window_function; ///< True if item represents window func
/**
If the item is in a SELECT list (Query_block::fields) and hidden is true,
the item wasn't actually in the list as given by the user (it was added
by the optimizer, to e.g. make sure it was part of a given
materialization), and should not be returned in the actual result.
If the item is not in a SELECT list, the value is irrelevant.
*/
bool hidden{false};
/**
True if item is a top most element in the expression being
evaluated for a check constraint.
*/
bool m_in_check_constraint_exec_ctx{false};
protected:
/**
Set of properties that are calculated by accumulation from underlying items.
Computed by constructors and fix_fields() and updated by
update_used_tables(). The properties are accumulated up to the root of the
current item tree, except they are not accumulated across subqueries and
functions.
*/
static constexpr uint8 PROP_SUBQUERY = 0x01;
static constexpr uint8 PROP_STORED_PROGRAM = 0x02;
static constexpr uint8 PROP_AGGREGATION = 0x04;
static constexpr uint8 PROP_WINDOW_FUNCTION = 0x08;
/**
Set if the item or one or more of the underlying items contains a
GROUP BY modifier (such as ROLLUP).
*/
static constexpr uint8 PROP_HAS_GROUPING_SET_DEP = 0x10;
/**
Set if the item or one or more of the underlying items is a GROUPING
function.
*/
static constexpr uint8 PROP_GROUPING_FUNC = 0x20;
uint8 m_accum_properties;
public:
/**
Check if this expression can be used for partial update of a given
JSON column.
For example, the expression `JSON_REPLACE(col, '$.foo', 'bar')`
can be used to partially update the column `col`.
@param field the JSON column that is being updated
@return true if this expression can be used for partial update,
false otherwise
*/
virtual bool supports_partial_update(const Field_json *field
[[maybe_unused]]) const {
return false;
}
/**
Whether the item returns array of its data type
*/
virtual bool returns_array() const { return false; }
/**
A helper function to ensure proper usage of CAST(.. AS .. ARRAY)
*/
virtual void allow_array_cast() {}
};
/**
Descriptor of what and how to cache for
Item::cache_const_expr_transformer/analyzer.
*/
struct cache_const_expr_arg {
/// Path from the expression's top to the current item in item tree
/// used to track parent of current item for caching JSON data
List<Item> stack;
/// Item to cache. Used as a binary flag, but kept as Item* for assertion
Item *cache_item{nullptr};
/// How to cache JSON data. @see Item::enum_const_item_cache
Item::enum_const_item_cache cache_arg{Item::CACHE_NONE};
};
/**
A helper class to give in a functor to Item::walk(). Use as e.g.:
bool result = WalkItem(root_item, enum_walk::POSTFIX, [](Item *item) { ... });
TODO: Make Item::walk() just take in a functor in the first place, instead of
a pointer-to-member and an opaque argument.
*/
template <class T>
inline bool WalkItem(Item *item, enum_walk walk, T &&functor) {
return item->walk(&Item::walk_helper_thunk<T>, walk,
reinterpret_cast<uchar *>(&functor));
}
/**
Overload for const 'item' and functor taking 'const Item*' argument.
*/
template <class T>
inline bool WalkItem(const Item *item, enum_walk walk, T &&functor) {
auto to_const = [&](const Item *descendant) { return functor(descendant); };
return WalkItem(const_cast<Item *>(item), walk, to_const);
}
/**
Same as WalkItem, but for Item::compile(). Use as e.g.:
Item *item = CompileItem(root_item,
[](Item *item) { return true; }, // Analyzer.
[](Item *item) { return item; }); // Transformer.
*/
template <class T, class U>
inline Item *CompileItem(Item *item, T &&analyzer, U &&transformer) {
uchar *analyzer_ptr = reinterpret_cast<uchar *>(&analyzer);
return item->compile(&Item::analyze_helper_thunk<T>, &analyzer_ptr,
&Item::walk_helper_thunk<U>,
reinterpret_cast<uchar *>(&transformer));
}
/**
Same as WalkItem, but for Item::transform(). Use as e.g.:
Item *item = TransformItem(root_item, [](Item *item) { return item; });
*/
template <class T>
Item *TransformItem(Item *item, T &&transformer) {
return item->transform(&Item::walk_helper_thunk<T>,
pointer_cast<uchar *>(&transformer));
}
class Item_basic_constant : public Item {
table_map used_table_map;
public:
Item_basic_constant() : Item(), used_table_map(0) {}
explicit Item_basic_constant(const POS &pos) : Item(pos), used_table_map(0) {}
/// @todo add implementation of basic_const_item
/// and remove from subclasses as appropriate.
void set_used_tables(table_map map) { used_table_map = map; }
table_map used_tables() const override { return used_table_map; }
bool check_function_as_value_generator(uchar *) override { return false; }
/* to prevent drop fixed flag (no need parent cleanup call) */
void cleanup() override {
// @todo We should ensure we never change "basic constant" nodes.
// We should then be able to add this assert:
// assert(marker == MARKER_NONE);
// and remove the call to Item::cleanup()
Item::cleanup();
}
bool basic_const_item() const override { return true; }
void set_str_value(String *str) { str_value = *str; }
};
/*****************************************************************************
The class is a base class for representation of stored routine variables in
the Item-hierarchy. There are the following kinds of SP-vars:
- local variables (Item_splocal);
- CASE expression (Item_case_expr);
*****************************************************************************/
class Item_sp_variable : public Item {
public:
Name_string m_name;
public:
#ifndef NDEBUG
/*
Routine to which this Item_splocal belongs. Used for checking if correct
runtime context is used for variable handling.
*/
sp_head *m_sp{nullptr};
#endif
public:
Item_sp_variable(const Name_string sp_var_name);
table_map used_tables() const override { return INNER_TABLE_BIT; }
bool fix_fields(THD *thd, Item **) override;
double val_real() override;
longlong val_int() override;
String *val_str(String *sp) override;
my_decimal *val_decimal(my_decimal *decimal_value) override;
bool val_json(Json_wrapper *result) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
bool is_null() override;
public:
inline void make_field(Send_field *field) override;
bool send(Protocol *protocol, String *str) override {
// Need to override send() in case this_item() is an Item_field with a
// ZEROFILL attribute.
return this_item()->send(protocol, str);
}
bool is_valid_for_pushdown(uchar *arg [[maybe_unused]]) override {
// It is ok to push down a condition like "column > SP_variable"
return false;
}
protected:
inline type_conversion_status save_in_field_inner(
Field *field, bool no_conversions) override;
};
/*****************************************************************************
Item_sp_variable inline implementation.
*****************************************************************************/
inline void Item_sp_variable::make_field(Send_field *field) {
Item *it = this_item();
it->item_name.copy(item_name.is_set() ? item_name : m_name);
it->make_field(field);
}
inline type_conversion_status Item_sp_variable::save_in_field_inner(
Field *field, bool no_conversions) {
return this_item()->save_in_field(field, no_conversions);
}
/*****************************************************************************
A reference to local SP variable (incl. reference to SP parameter), used in
runtime.
*****************************************************************************/
class Item_splocal final : public Item_sp_variable,
private Settable_routine_parameter {
uint m_var_idx;
public:
/*
If this variable is a parameter in LIMIT clause.
Used only during NAME_CONST substitution, to not append
NAME_CONST to the resulting query and thus not break
the slave.
*/
bool limit_clause_param;
/*
Position of this reference to SP variable in the statement (the
statement itself is in sp_instr_stmt::m_query).
This is valid only for references to SP variables in statements,
excluding DECLARE CURSOR statement. It is used to replace references to SP
variables with NAME_CONST calls when putting statements into the binary
log.
Value of 0 means that this object doesn't corresponding to reference to
SP variable in query text.
*/
uint pos_in_query;
/*
Byte length of SP variable name in the statement (see pos_in_query).
The value of this field may differ from the name_length value because
name_length contains byte length of UTF8-encoded item name, but
the query string (see sp_instr_stmt::m_query) is currently stored with
a charset from the SET NAMES statement.
*/
uint len_in_query;
Item_splocal(const Name_string sp_var_name, uint sp_var_idx,
enum_field_types sp_var_type, uint pos_in_q = 0,
uint len_in_q = 0);
bool is_splocal() const override { return true; }
Item *this_item() override;
const Item *this_item() const override;
Item **this_item_addr(THD *thd, Item **) override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
public:
uint get_var_idx() const { return m_var_idx; }
Type type() const override { return ROUTINE_FIELD_ITEM; }
Item_result result_type() const override {
return type_to_result(data_type());
}
bool val_json(Json_wrapper *result) override;
private:
bool set_value(THD *thd, sp_rcontext *ctx, Item **it) override;
public:
Settable_routine_parameter *get_settable_routine_parameter() override {
return this;
}
};
/*****************************************************************************
A reference to case expression in SP, used in runtime.
*****************************************************************************/
class Item_case_expr final : public Item_sp_variable {
public:
Item_case_expr(uint case_expr_id);
public:
Item *this_item() override;
const Item *this_item() const override;
Item **this_item_addr(THD *thd, Item **) override;
Type type() const override { return this_item()->type(); }
Item_result result_type() const override {
return this_item()->result_type();
}
/*
NOTE: print() is intended to be used from views and for debug.
Item_case_expr can not occur in views, so here it is only for debug
purposes.
*/
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
private:
uint m_case_expr_id;
};
/*
NAME_CONST(given_name, const_value).
This 'function' has all properties of the supplied const_value (which is
assumed to be a literal constant), and the name given_name.
This is used to replace references to SP variables when we write PROCEDURE
statements into the binary log.
TODO
Together with Item_splocal and Item::this_item() we can actually extract
common a base of this class and Item_splocal. Maybe it is possible to
extract a common base with class Item_ref, too.
*/
class Item_name_const final : public Item {
typedef Item super;
Item *value_item;
Item *name_item;
bool valid_args;
public:
Item_name_const(const POS &pos, Item *name_arg, Item *val);
bool do_itemize(Parse_context *pc, Item **res) override;
bool fix_fields(THD *, Item **) override;
enum Type type() const override { return NAME_CONST_ITEM; }
double val_real() override;
longlong val_int() override;
String *val_str(String *sp) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
bool is_null() override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
Item_result result_type() const override { return value_item->result_type(); }
bool cache_const_expr_analyzer(uchar **) override {
// Item_name_const always wraps a literal, so there is no need to cache it.
return false;
}
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override {
return value_item->save_in_field(field, no_conversions);
}
};
bool convert_const_strings(DTCollation &coll, Item **args, uint nargs,
int item_sep);
bool agg_item_collations_for_comparison(DTCollation &c, const char *name,
Item **items, uint nitems, uint flags);
bool agg_item_charsets(DTCollation &c, const char *name, Item **items,
uint nitems, uint flags, int item_sep);
inline bool agg_item_charsets_for_string_result(DTCollation &c,
const char *name, Item **items,
uint nitems, int item_sep = 1) {
const uint flags = MY_COLL_ALLOW_SUPERSET_CONV |
MY_COLL_ALLOW_COERCIBLE_CONV | MY_COLL_ALLOW_NUMERIC_CONV;
return agg_item_charsets(c, name, items, nitems, flags, item_sep);
}
inline bool agg_item_charsets_for_comparison(DTCollation &c, const char *name,
Item **items, uint nitems,
int item_sep = 1) {
const uint flags = MY_COLL_ALLOW_SUPERSET_CONV |
MY_COLL_ALLOW_COERCIBLE_CONV | MY_COLL_DISALLOW_NONE;
return agg_item_charsets(c, name, items, nitems, flags, item_sep);
}
class Item_num : public Item_basic_constant {
typedef Item_basic_constant super;
public:
Item_num() { collation.set_numeric(); }
explicit Item_num(const POS &pos) : super(pos) { collation.set_numeric(); }
virtual Item_num *neg() = 0;
bool check_partition_func_processor(uchar *) override { return false; }
};
inline constexpr uint16 NO_FIELD_INDEX((uint16)(-1));
class Item_ident : public Item {
typedef Item super;
protected:
/**
The fields m_orig_db_name, m_orig_table_name and m_orig_field_name are
maintained so that we can provide information about the origin of a
column that may have been renamed within the query, e.g. as required by
connectors.
Names the original schema of the table that is the source of the field.
If field is from
- a non-aliased base table, the same as db_name.
- an aliased base table, the name of the schema of the base table.
- an expression (including aggregation), a NULL pointer.
- a derived table, the name of the schema of the underlying base table.
- a view, the name of the schema of the underlying base table.
- a temporary table (in optimization stage), the name of the schema of
the source base table.
*/
const char *m_orig_db_name;
/**
Names the original table that is the source of the field. If field is from
- a non-aliased base table, the same as table_name.
- an aliased base table, the name of the base table.
- an expression (including aggregation), a NULL pointer.
- a derived table, the name of the underlying base table.
- a view, the name of the underlying base table.
- a temporary table (in optimization stage), the name of the source base tbl
*/
const char *m_orig_table_name;
/**
Names the field in the source base table. If field is from
- an expression, a NULL pointer.
- a view or base table and is not aliased, the same as field_name.
- a view or base table and is aliased, the column name of the view or
base table.
- a derived table, the column name of the underlying base table.
- a temporary table (in optimization stage), the name of the source column.
*/
const char *m_orig_field_name;
bool m_alias_of_expr; ///< if this Item's name is alias of SELECT expression
public:
/**
For regularly resolved column references, 'context' points to a name
resolution context object belonging to the query block which simply
contains the reference. To further clarify, in
SELECT (SELECT t.a) FROM t;
t.a is an Item_ident whose 'context' belongs to the subquery
(context->query_block == that of the subquery).
For column references that are part of a generated column expression,
'context' points to a temporary name resolution context object during
resolving, but is set to nullptr after resolving is done. Note that
Item_ident::local_column() depends on that.
*/
Name_resolution_context *context;
/**
Schema name of the base table or view the column is part of.
If an expression, a NULL pointer.
If from a derived table, a NULL pointer.
*/
const char *db_name;
/**
If column is from a non-aliased base table or view, name of base table or
view.
If column is from an aliased base table or view, the alias name.
If column is from a derived table, the name of the derived table.
If column is from an expression, a NULL pointer.
*/
const char *table_name;
/**
If column is aliased, the column alias name.
If column is from a non-aliased base table or view, the name of the
column in that base table or view.
If column is from an expression, a string generated from that expression.
Notice that a column can be aliased in two ways:
1. With an explicit column alias, or @<as clause@>, or
2. With only a column name specified, which differs from the table's
column name due to case insensitivity.
In both cases field_name will differ from m_orig_field_name.
field_name is normally identical to Item::item_name.
*/
const char *field_name;
/**
Points to the Table_ref object of the table or view that the column or
reference is resolved against (only valid after resolving).
Notice that for the following types of "tables", no Table_ref object is
assigned and hence m_table_ref is NULL:
- Temporary tables assigned by join optimizer for sorting and aggregation.
- Stored procedure dummy tables.
For fields referencing such tables, table number is always 0, and other
uses of m_table_ref is not needed.
*/
Table_ref *m_table_ref{nullptr};
/**
For a column or reference that is an outer reference, depended_from points
to the qualifying query block, otherwise it is NULL
(only valid after resolving).
*/
Query_block *depended_from{nullptr};
Item_ident(Name_resolution_context *context_arg, const char *db_name_arg,
const char *table_name_arg, const char *field_name_arg)
: m_orig_db_name(db_name_arg),
m_orig_table_name(table_name_arg),
m_orig_field_name(field_name_arg),
m_alias_of_expr(false),
context(context_arg),
db_name(db_name_arg),
table_name(table_name_arg),
field_name(field_name_arg) {
item_name.set(field_name_arg);
}
Item_ident(const POS &pos, const char *db_name_arg,
const char *table_name_arg, const char *field_name_arg)
: super(pos),
m_orig_db_name(db_name_arg),
m_orig_table_name(table_name_arg),
m_orig_field_name(field_name_arg),
m_alias_of_expr(false),
db_name(db_name_arg),
table_name(table_name_arg),
field_name(field_name_arg) {
item_name.set(field_name_arg);
}
/// Constructor used by Item_field & Item_*_ref (see Item comment)
Item_ident(THD *thd, Item_ident *item)
: Item(thd, item),
m_orig_db_name(item->m_orig_db_name),
m_orig_table_name(item->m_orig_table_name),
m_orig_field_name(item->m_orig_field_name),
m_alias_of_expr(item->m_alias_of_expr),
context(item->context),
db_name(item->db_name),
table_name(item->table_name),
field_name(item->field_name),
m_table_ref(item->m_table_ref),
depended_from(item->depended_from) {}
bool do_itemize(Parse_context *pc, Item **res) override;
const char *full_name() const override;
void set_orignal_db_name(const char *name_arg) { m_orig_db_name = name_arg; }
void set_original_table_name(const char *name_arg) {
m_orig_table_name = name_arg;
}
void set_original_field_name(const char *name_arg) {
m_orig_field_name = name_arg;
}
const char *original_db_name() const { return m_orig_db_name; }
const char *original_table_name() const { return m_orig_table_name; }
const char *original_field_name() const { return m_orig_field_name; }
void fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) override;
bool aggregate_check_distinct(uchar *arg) override;
bool aggregate_check_group(uchar *arg) override;
Bool3 local_column(const Query_block *sl) const override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override {
print(thd, str, query_type, db_name, table_name);
}
protected:
/**
Function to print column name for a table
To print a column for a permanent table (picks up database and table from
Item_ident object):
item->print(str, qt)
To print a column for a temporary table:
item->print(str, qt, specific_db, specific_table)
Items of temporary table fields have empty/NULL values of table_name and
db_name. To print column names in a 3D form (`database`.`table`.`column`),
this function prints db_name_arg and table_name_arg parameters instead of
this->db_name and this->table_name respectively.
@param thd Thread handle.
@param [out] str Output string buffer.
@param query_type Bitmap to control printing details.
@param db_name_arg String to output as a column database name.
@param table_name_arg String to output as a column table name.
*/
void print(const THD *thd, String *str, enum_query_type query_type,
const char *db_name_arg, const char *table_name_arg) const;
public:
///< Argument object to change_context_processor
struct Change_context {
Name_resolution_context *m_context;
Change_context(Name_resolution_context *context) : m_context(context) {}
};
bool change_context_processor(uchar *arg) override {
context = reinterpret_cast<Change_context *>(arg)->m_context;
return false;
}
/// @returns true if this Item's name is alias of SELECT expression
bool is_alias_of_expr() const { return m_alias_of_expr; }
/// Marks that this Item's name is alias of SELECT expression
void set_alias_of_expr() { m_alias_of_expr = true; }
/**
Argument structure for walk processor Item::update_depended_from
*/
struct Depended_change {
Query_block *old_depended_from; // the transformed query block
Query_block *new_depended_from; // the new derived table for grouping
};
bool update_depended_from(uchar *) override;
/**
@returns true if a part of this Item's full name (name or table name) is
an alias.
*/
virtual bool alias_name_used() const { return m_alias_of_expr; }
friend bool insert_fields(THD *thd, Name_resolution_context *context,
const char *db_name, const char *table_name,
mem_root_deque<Item *>::iterator *it,
bool any_privileges);
bool is_strong_side_column_not_in_fd(uchar *arg) override;
bool is_column_not_in_fd(uchar *arg) override;
};
class Item_ident_for_show final : public Item {
public:
Field *field;
const char *db_name;
const char *table_name;
Item_ident_for_show(Field *par_field, const char *db_arg,
const char *table_name_arg)
: field(par_field), db_name(db_arg), table_name(table_name_arg) {}
enum Type type() const override { return FIELD_ITEM; }
bool fix_fields(THD *thd, Item **ref) override;
double val_real() override { return field->val_real(); }
longlong val_int() override { return field->val_int(); }
String *val_str(String *str) override { return field->val_str(str); }
my_decimal *val_decimal(my_decimal *dec) override {
return field->val_decimal(dec);
}
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return field->get_date(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override { return field->get_time(ltime); }
void make_field(Send_field *tmp_field) override;
const CHARSET_INFO *charset_for_protocol() override {
return field->charset_for_protocol();
}
};
class Item_field : public Item_ident {
typedef Item_ident super;
protected:
void set_field(Field *field);
void fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) override {
super::fix_after_pullout(parent_query_block, removed_query_block);
// Update nullability information, as the table may have taken over
// null_row status from the derived table it was part of.
set_nullable(field->is_nullable() || field->is_tmp_nullable() ||
field->table->is_nullable());
}
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
/// Source field
Field *field{nullptr};
private:
/// Result field
Field *result_field{nullptr};
// save_in_field() and save_org_in_field() are often called repeatedly
// with the same destination field (although the destination for the
// two are distinct, thus two distinct caches). We detect this case by
// storing the last destination, and whether it was of a compatible type
// that we can memcpy into (see fields_are_memcpyable()). This saves time
// doing the same type checking over and over again.
//
// The _memcpyable fields are uint32_t(-1) if the fields are not memcpyable,
// and pack_length() (ie., the amount of bytes to copy) if they are.
// See field_conv_with_cache(), where this logic is encapsulated.
Field *last_org_destination_field{nullptr};
Field *last_destination_field{nullptr};
uint32_t last_org_destination_field_memcpyable = ~0U;
uint32_t last_destination_field_memcpyable = ~0U;
/**
If this field is derived from another field, e.g. it is reading a column
from a temporary table which is populated from a base table, this member
points to the field used to populate the temporary table column.
*/
const Item_field *m_base_item_field{nullptr};
/**
State used for transforming scalar subqueries to JOINs with derived tables,
cf. \c transform_grouped_to_derived. Has accessor.
*/
bool m_protected_by_any_value{false};
/**
Holds a list of items whose values must be equal to the value of
this field, during execution.
Used during optimization to perform multiple equality analysis,
this analysis should be performed during preparation instead, so that
Item_field can be const after preparation.
*/
Item_multi_eq *m_multi_equality{nullptr};
public:
/**
Index for this field in table->field array. Holds NO_FIELD_INDEX
if index value is not known.
*/
uint16 field_index{NO_FIELD_INDEX};
Item_multi_eq *multi_equality() const { return m_multi_equality; }
void set_item_equal_all_join_nests(Item_multi_eq *item_equal) {
assert(item_equal != nullptr);
item_equal_all_join_nests = item_equal;
}
// A list of fields that are considered "equal" to this field. E.g., a query
// on the form "a JOIN b ON a.i = b.i JOIN c ON b.i = c.i" would consider
// a.i, b.i and c.i equal due to equality propagation. This is the same as
// "item_equal" above, except that "item_equal" will only contain fields from
// the same join nest. This is used by hash join and BKA when they need to
// undo multi-equality propagation done by the optimizer. (The optimizer may
// generate join conditions that references unreachable fields for said
// iterators.) The split is done because NDB expects the list to only
// contain fields from the same join nest.
Item_multi_eq *item_equal_all_join_nests{nullptr};
/// If true, the optimizer's constant propagation will not replace this item
/// with an equal constant.
bool no_constant_propagation{false};
/*
if any_privileges set to true then here real effective privileges will
be stored
*/
Access_bitmask have_privileges{0};
/* field need any privileges (for VIEW creation) */
bool any_privileges{false};
/*
if this field is used in a context where covering prefix keys
are supported.
*/
bool can_use_prefix_key{false};
Item_field(Name_resolution_context *context_arg, const char *db_arg,
const char *table_name_arg, const char *field_name_arg);
Item_field(const POS &pos, const char *db_arg, const char *table_name_arg,
const char *field_name_arg);
Item_field(THD *thd, Item_field *item);
Item_field(THD *thd, Name_resolution_context *context_arg, Field *field);
Item_field(Field *field);
bool do_itemize(Parse_context *pc, Item **res) override;
enum Type type() const override { return FIELD_ITEM; }
bool eq(const Item *item) const override;
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override;
longlong val_date_temporal() override;
longlong val_time_temporal_at_utc() override;
longlong val_date_temporal_at_utc() override;
my_decimal *val_decimal(my_decimal *) override;
String *val_str(String *) override;
bool val_json(Json_wrapper *result) override;
bool send(Protocol *protocol, String *str_arg) override;
void reset_field(Field *f);
bool fix_fields(THD *, Item **) override;
void make_field(Send_field *tmp_field) override;
void save_org_in_field(Field *field) override;
table_map used_tables() const override;
Item_result result_type() const override { return field->result_type(); }
Item_result numeric_context_result_type() const override {
return field->numeric_context_result_type();
}
TYPELIB *get_typelib() const override;
Item_result cast_to_int_type() const override {
return field->cast_to_int_type();
}
enum_monotonicity_info get_monotonicity_info() const override {
return MONOTONIC_STRICT_INCREASING;
}
longlong val_int_endpoint(bool left_endp, bool *incl_endp) override;
void set_result_field(Field *field_arg) override { result_field = field_arg; }
Field *get_tmp_table_field() override { return result_field; }
Field *tmp_table_field(TABLE *) override { return result_field; }
void set_base_item_field(const Item_field *item) {
m_base_item_field =
item->base_item_field() != nullptr ? item->base_item_field() : item;
}
const Item_field *base_item_field() const {
return m_base_item_field ? m_base_item_field : this;
}
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
bool get_timeval(my_timeval *tm, int *warnings) override;
bool is_null() override {
// NOTE: May return true even if maybe_null is not set!
// This can happen if the underlying TABLE did not have a NULL row
// at set_field() time (ie., table->is_null_row() was false),
// but does now.
return field->is_null();
}
Item *get_tmp_table_item(THD *thd) override;
bool collect_item_field_processor(uchar *arg) override;
bool collect_item_field_or_ref_processor(uchar *arg) override;
bool collect_item_field_or_view_ref_processor(uchar *arg) override;
bool collect_outer_field_processor(uchar *arg) override;
bool add_field_to_set_processor(uchar *arg) override;
bool add_field_to_cond_set_processor(uchar *) override;
bool remove_column_from_bitmap(uchar *arg) override;
bool find_item_in_field_list_processor(uchar *arg) override;
bool find_field_processor(uchar *arg) override {
return pointer_cast<Field *>(arg) == field;
}
bool check_function_as_value_generator(uchar *args) override;
bool mark_field_in_map(uchar *arg) override {
auto mark_field = pointer_cast<Mark_field *>(arg);
bool rc = Item::mark_field_in_map(mark_field, field);
if (result_field && result_field != field)
rc |= Item::mark_field_in_map(mark_field, result_field);
return rc;
}
bool used_tables_for_level(uchar *arg) override;
bool check_column_privileges(uchar *arg) override;
bool check_partition_func_processor(uchar *) override { return false; }
void bind_fields() override;
bool is_valid_for_pushdown(uchar *arg) override;
bool check_column_in_window_functions(uchar *arg) override;
bool check_column_in_group_by(uchar *arg) override;
Item *replace_with_derived_expr(uchar *arg) override;
Item *replace_with_derived_expr_ref(uchar *arg) override;
void cleanup() override;
void reset_field();
Item_multi_eq *find_multi_equality(COND_EQUAL *cond_equal) const;
bool subst_argument_checker(uchar **arg) override;
Item *equal_fields_propagator(uchar *arg) override;
Item *replace_item_field(uchar *) override;
bool disable_constant_propagation(uchar *) override {
no_constant_propagation = true;
return false;
}
Item *replace_equal_field(uchar *) override;
inline uint32 max_disp_length() { return field->max_display_length(); }
Item_field *field_for_view_update() override { return this; }
bool fix_outer_field(THD *thd, Field **field, Item_ident **ref_field,
bool *complete);
Item *update_value_transformer(uchar *select_arg) override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool is_outer_field() const override {
assert(fixed);
return m_table_ref->outer_join || m_table_ref->outer_join_nest();
}
Field::geometry_type get_geometry_type() const override {
assert(data_type() == MYSQL_TYPE_GEOMETRY);
return field->get_geometry_type();
}
const CHARSET_INFO *charset_for_protocol(void) override {
return field->charset_for_protocol();
}
#ifndef NDEBUG
void dbug_print() const {
fprintf(DBUG_FILE, "<field ");
if (field) {
fprintf(DBUG_FILE, "'%s.%s': ", field->table->alias, field->field_name);
field->dbug_print();
} else
fprintf(DBUG_FILE, "NULL");
fprintf(DBUG_FILE, ", result_field: ");
if (result_field) {
fprintf(DBUG_FILE, "'%s.%s': ", result_field->table->alias,
result_field->field_name);
result_field->dbug_print();
} else
fprintf(DBUG_FILE, "NULL");
fprintf(DBUG_FILE, ">\n");
}
#endif
float get_filtering_effect(THD *thd, table_map filter_for_table,
table_map read_tables,
const MY_BITMAP *fields_to_ignore,
double rows_in_table) override;
/**
Returns the probability for the predicate "col OP <val>" to be
true for a row in the case where no index statistics or range
estimates are available for 'col'.
The probability depends on the number of rows in the table: it is by
default 'default_filter', but never lower than 1/max_distinct_values
(e.g. number of rows in the table, or the number of distinct values
possible for the datatype if the field provides that kind of
information).
@param max_distinct_values The maximum number of distinct values,
typically the number of rows in the table
@param default_filter The default filter for the predicate
@return the estimated filtering effect for this predicate
*/
float get_cond_filter_default_probability(double max_distinct_values,
float default_filter) const;
/**
@note that field->table->alias_name_used is reliable only if
thd->lex->need_correct_ident() is true.
*/
bool alias_name_used() const override {
return m_alias_of_expr ||
// maybe the qualifying table was given an alias ("t1 AS foo"):
(field && field->table && field->table->alias_name_used);
}
bool repoint_const_outer_ref(uchar *arg) override;
bool returns_array() const override { return field && field->is_array(); }
void set_can_use_prefix_key() override { can_use_prefix_key = true; }
bool replace_field_processor(uchar *arg) override;
bool strip_db_table_name_processor(uchar *) override;
/**
Checks if the current object represents an asterisk select list item
@returns false if a regular column reference, true if an asterisk
select list item.
*/
virtual bool is_asterisk() const { return false; }
/// See \c m_protected_by_any_value
bool protected_by_any_value() const { return m_protected_by_any_value; }
void compute_cost(CostOfItem *root_cost) const override {
field->add_to_cost(root_cost);
}
};
/**
Represents [schema.][table.]* in a select list
Item_asterisk is used to insert placeholder objects for the special
select list item * (asterisk) into AST.
Those placeholder objects are to be substituted later with e.g. a list of real
table columns by a resolver (@see setup_wild).
@todo The parent class Item_field is redundant. Refactor setup_wild() to
replace Item_field with a simpler one.
*/
class Item_asterisk : public Item_field {
typedef Item_field super;
public:
/**
Constructor
@param pos Location of the * (asterisk) lexeme.
@param opt_schema_name Schema name or nullptr.
@param opt_table_name Table name or nullptr.
*/
Item_asterisk(const POS &pos, const char *opt_schema_name,
const char *opt_table_name)
: super(pos, opt_schema_name, opt_table_name, "*") {}
bool do_itemize(Parse_context *pc, Item **res) override;
bool fix_fields(THD *, Item **) override {
assert(false); // should never happen: see setup_wild()
return true;
}
bool is_asterisk() const override { return true; }
};
// See if the provided item points to a reachable field (one that belongs to a
// table within 'reachable_tables'). If not, go through the list of 'equal'
// items in the item and see if we have a field that is reachable. If any such
// field is found, set "found" to true and create a new Item_field that points
// to this reachable field and return it if we are asked to "replace". If the
// provided item is already reachable, or if we cannot find a reachable field,
// return the provided item unchanged and set "found" to false. This is used
// when creating a hash join iterator, where the join condition may point to a
// non-reachable field due to multi-equality propagation during optimization.
// (Ideally, the optimizer should not set up such condition in the first place.
// This is difficult, if not impossible, to accomplish, given that the plan
// created by the optimizer does not map 100% to the iterator executor.) Note
// that if the field is not reachable, and we cannot find a reachable field, we
// provided field is returned unchanged. The effect is that the hash join will
// degrade into a nested loop.
Item_field *FindEqualField(Item_field *item_field, table_map reachable_tables,
bool replace, bool *found);
class Item_null : public Item_basic_constant {
typedef Item_basic_constant super;
void init() {
set_data_type_null();
null_value = true;
fixed = true;
}
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_null() {
init();
item_name = NAME_STRING("NULL");
}
explicit Item_null(const POS &pos) : super(pos) {
init();
item_name = NAME_STRING("NULL");
}
Item_null(const Name_string &name_par) {
init();
item_name = name_par;
}
enum Type type() const override { return NULL_ITEM; }
bool eq(const Item *item) const override;
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override { return val_int(); }
longlong val_date_temporal() override { return val_int(); }
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *, my_time_flags_t) override { return true; }
bool get_time(MYSQL_TIME *) override { return true; }
bool val_json(Json_wrapper *wr) override;
bool send(Protocol *protocol, String *str) override;
Item_result result_type() const override { return STRING_RESULT; }
Item *clone_item() const override { return new Item_null(item_name); }
bool is_null() override { return true; }
void print(const THD *, String *str,
enum_query_type query_type) const override {
str->append(query_type == QT_NORMALIZED_FORMAT ? "?" : "NULL");
}
bool check_partition_func_processor(uchar *) override { return false; }
};
/// Dynamic parameters used as placeholders ('?') inside prepared statements
class Item_param final : public Item, private Settable_routine_parameter {
typedef Item super;
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
enum enum_item_param_state {
NO_VALUE,
NULL_VALUE,
INT_VALUE,
REAL_VALUE,
STRING_VALUE,
TIME_VALUE, ///< holds TIME, DATE, DATETIME
LONG_DATA_VALUE,
DECIMAL_VALUE
};
void set_param_state(enum enum_item_param_state state) {
m_param_state = state;
}
enum enum_item_param_state param_state() const { return m_param_state; }
void mark_json_as_scalar() override { m_json_as_scalar = true; }
/*
A buffer for string and long data values. Historically all allocated
values returned from val_str() were treated as eligible to
modification. I. e. in some cases Item_func_concat can append it's
second argument to return value of the first one. Because of that we
can't return the original buffer holding string data from val_str(),
and have to have one buffer for data and another just pointing to
the data. This is the latter one and it's returned from val_str().
Can not be declared inside the union as it's not a POD type.
*/
String str_value_ptr;
my_decimal decimal_value;
union {
longlong integer;
double real;
MYSQL_TIME time;
} value;
private:
/**
True if type of parameter is inherited from parent object (like a typecast).
Reprepare of statement will not change this type.
E.g, we have CAST(? AS DOUBLE), the parameter gets data type
MYSQL_TYPE_DOUBLE and m_type_inherited is set true.
*/
bool m_type_inherited{false};
/**
True if type of parameter has been pinned, attempt to use an incompatible
actual type will cause error (no repreparation occurs), and value is
subject to range check. This is used when the parameter is in a context
where its type is imposed. For example, in LIMIT ?, we assign
data_type() == integer, unsigned; and the provided value must be
convertible to unsigned integer: passing a DOUBLE, instead of causing a
repreparation as for an ordinary parameter, will cause an error; passing
integer '-1' will also cause an error.
*/
bool m_type_pinned{false};
/**
Parameter objects have a rather complex handling of data type, in order
to consistently handle required type conversion semantics. There are
three data type properties involved:
1. The data_type() property contains the desired type of the parameter
value, as defined by an explicit CAST, the operation the parameter
is part of, and/or the context given by other values and expressions.
After implicit repreparation it may also be assigned from provided
parameter values.
2. The data_type_source() property is the data type of the parameter value,
as given by the supplied user variable or from the protocol buffer.
3. The data_type_actual() property is the data type of the parameter value,
after possible conversion from the source data type.
Conversions may involve
- Character set conversion of string value.
- Conversion from string or number into temporal value, if the
resolved data type is a temporal.
- Conversion from string to number, if the resolved data type is numeric.
In addition, each data type property may have extra attributes to enforce
correct character set, collation and signedness of integers.
*/
/**
The "source" data type of the provided parameter.
Used when the parameter comes through protocol buffers.
Notice that signedness of integers is stored in m_unsigned_actual.
*/
enum_field_types m_data_type_source{MYSQL_TYPE_INVALID};
/**
The actual data type of the parameter value provided by the user.
For example:
PREPARE s FROM "SELECT ?=3e0";
makes Item_param->data_type() be MYSQL_TYPE_DOUBLE ; then:
SET @a='1';
EXECUTE s USING @a;
data_type() is still MYSQL_TYPE_DOUBLE, while data_type_source() is
MYSQL_TYPE_VARCHAR and data_type_actual() is MYSQL_TYPE_VARCHAR.
Compatibility of data_type() and data_type_actual() is later tested
in check_parameter_types().
Only a limited set of field types are possible values:
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_DOUBLE,
MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME,
MYSQL_TYPE_VARCHAR, MYSQL_TYPE_NULL, MYSQL_TYPE_INVALID
*/
enum_field_types m_data_type_actual{MYSQL_TYPE_INVALID};
/// Used when actual value is integer to indicate whether value is unsigned
bool m_unsigned_actual{false};
/**
The character set and collation of the source parameter value.
Ignored if not a string value.
- If parameter value is sent over the protocol: the client collation
- If parameter value is a user variable: the variable's collation
*/
const CHARSET_INFO *m_collation_source{nullptr};
/**
The character set and collation of the value stored in str_value, possibly
after being converted from the m_collation_source collation.
Ignored if not a string value.
- If the derived collation is binary, the connection collation.
- Otherwise, the derived collation (@see Item::collation).
*/
const CHARSET_INFO *m_collation_actual{nullptr};
/// Result type of parameter. @todo replace with type_to_result(data_type()
Item_result m_result_type{STRING_RESULT};
/**
m_param_state is used to indicate that no parameter value is available
with NO_VALUE, or a NULL value is available (NULL_VALUE), or the actual
type of the provided parameter value. Usually, this matches m_actual_type,
but in the case of pinned data types, this is matching the resolved data
type of the parameter. m_param_state reflects the type of the value stored
in Item_param::value.
*/
enum_item_param_state m_param_state{NO_VALUE};
/**
If true, when retrieving JSON data, attempt to interpret a string value as
a scalar JSON value, otherwise interpret it as a JSON object.
*/
bool m_json_as_scalar{false};
/*
data_type() is used when this item is used in a temporary table.
This is NOT placeholder metadata sent to client, as this value
is assigned after sending metadata (in setup_one_conversion_function).
For example in case of 'SELECT ?' you'll get MYSQL_TYPE_STRING both
in result set and placeholders metadata, no matter what type you will
supply for this placeholder in mysql_stmt_execute.
*/
public:
/*
Offset of placeholder inside statement text. Used to create
no-placeholders version of this statement for the binary log.
*/
uint pos_in_query;
Item_param(const POS &pos, MEM_ROOT *root, uint pos_in_query_arg);
bool do_itemize(Parse_context *pc, Item **item) override;
Item_result result_type() const override { return m_result_type; }
enum Type type() const override { return PARAM_ITEM; }
/// Set the currently resolved data type for this parameter as inherited
void set_data_type_inherited() override { m_type_inherited = true; }
/// @returns true if data type for this parameter is inherited.
bool is_type_inherited() const { return m_type_inherited; }
/// Pin the currently resolved data type for this parameter.
void pin_data_type() override { m_type_pinned = true; }
/// @returns true if data type for this parameter is pinned.
bool is_type_pinned() const { return m_type_pinned; }
/// @returns true if actual data value (integer) is unsigned
bool is_unsigned_actual() const { return m_unsigned_actual; }
void set_collation_source(const CHARSET_INFO *coll) {
assert(is_string_type(m_data_type_source));
m_collation_source = coll;
}
void set_collation_actual(const CHARSET_INFO *coll) {
assert(is_string_type(m_data_type_actual));
m_collation_actual = coll;
}
/// @returns the source collation of the supplied string parameter
const CHARSET_INFO *collation_source() const { return m_collation_source; }
/// @returns the actual collation of the supplied string parameter
const CHARSET_INFO *collation_actual() const {
assert(is_string_type(m_data_type_actual));
return m_collation_actual;
}
bool fix_fields(THD *thd, Item **ref) override;
bool propagate_type(THD *thd, const Type_properties &type) override;
double val_real() override;
longlong val_int() override;
my_decimal *val_decimal(my_decimal *) override;
String *val_str(String *) override;
bool val_json(Json_wrapper *result) override;
bool get_time(MYSQL_TIME *tm) override;
bool get_date(MYSQL_TIME *tm, my_time_flags_t fuzzydate) override;
void set_data_type_source(enum_field_types data_type, bool unsigned_val) {
m_data_type_source = data_type;
m_unsigned_actual = unsigned_val;
}
// For use with non-integer field types only
void set_data_type_actual(enum_field_types data_type) {
m_data_type_actual = data_type;
}
/// For use with all field types, especially integer types
void set_data_type_actual(enum_field_types data_type, bool unsigned_val) {
m_data_type_actual = data_type;
m_unsigned_actual = unsigned_val;
}
enum_field_types data_type_source() const { return m_data_type_source; }
enum_field_types data_type_actual() const { return m_data_type_actual; }
enum_field_types actual_data_type() const override {
return data_type_actual();
}
void set_null();
void set_int(longlong i);
void set_int(ulonglong i);
void set_double(double i);
void set_decimal(const char *str, ulong length);
void set_decimal(const my_decimal *dv);
bool set_str(const char *str, size_t length);
bool set_longdata(const char *str, ulong length);
void set_time(MYSQL_TIME *tm, enum_mysql_timestamp_type type);
bool set_from_user_var(THD *thd, const user_var_entry *entry);
void copy_param_actual_type(Item_param *from);
void reset();
const String *query_val_str(const THD *thd, String *str) const;
bool convert_value();
/*
Parameter is treated as constant during execution, thus it will not be
evaluated during preparation.
*/
table_map used_tables() const override { return INNER_TABLE_BIT; }
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool is_null() override {
assert(m_param_state != NO_VALUE);
return m_param_state == NULL_VALUE;
}
Item *clone_item() const override;
/*
Implement by-value equality evaluation if parameter value
is set and is a basic constant (integer, real or string).
Otherwise return false.
*/
bool eq(const Item *item) const override;
void set_param_type_and_swap_value(Item_param *from);
bool is_non_const_over_literals(uchar *) override { return true; }
/**
This should be called after any modification done to this Item, to
propagate the said modification to all its clones.
*/
void sync_clones();
bool add_clone(Item_param *i) { return m_clones.push_back(i); }
private:
Settable_routine_parameter *get_settable_routine_parameter() override {
return this;
}
bool set_value(THD *, sp_rcontext *, Item **it) override;
void set_out_param_info(Send_field *info) override;
public:
const Send_field *get_out_param_info() const override;
void make_field(Send_field *field) override;
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->err_code = func_arg->get_unnamed_function_error_code();
return true;
}
bool is_valid_for_pushdown(uchar *arg [[maybe_unused]]) override {
// It is ok to push down a condition like "column > PS_parameter".
return false;
}
private:
Send_field *m_out_param_info{nullptr};
/**
If a query expression's text QT or text of a condition (CT) that is pushed
down to a derived table, containing a parameter, is internally duplicated
and parsed twice (@see reparse_common_table_expression, parse_expression),
the first parsing will create an Item_param I, and the re-parsing, which
parses a forged "(QT)" parse-this-CTE type of statement or parses a
forged condition "(CT)", will create an Item_param J. J should not exist:
- from the point of view of logging: it is not in the original query so it
should not be substituted in the query written to logs (in insert_params()
if with_log is true).
- from the POV of the user:
* user provides one single value for I, not one for I and one for J.
* user expects mysql_stmt_param_count() to return 1, not 2 (count is
sent by the server in send_prep_stmt()).
That is why J is part neither of LEX::param_list, nor of param_array; it
is considered an inferior clone of I; I::m_clones contains J.
The connection between I and J is made once, by comparing their
byte position in the statement, in Item_param::itemize().
J gets its value from I: @see Item_param::sync_clones.
*/
Mem_root_array<Item_param *> m_clones;
};
class Item_int : public Item_num {
typedef Item_num super;
public:
longlong value;
Item_int(int32 i, uint length = MY_INT32_NUM_DECIMAL_DIGITS)
: value((longlong)i) {
set_data_type(MYSQL_TYPE_LONGLONG);
set_max_size(length);
fixed = true;
}
Item_int(const POS &pos, int32 i, uint length = MY_INT32_NUM_DECIMAL_DIGITS)
: super(pos), value((longlong)i) {
set_data_type(MYSQL_TYPE_LONGLONG);
set_max_size(length);
fixed = true;
}
Item_int(longlong i, uint length = MY_INT64_NUM_DECIMAL_DIGITS) : value(i) {
set_data_type(MYSQL_TYPE_LONGLONG);
set_max_size(length);
fixed = true;
}
Item_int(ulonglong i, uint length = MY_INT64_NUM_DECIMAL_DIGITS)
: value((longlong)i) {
set_data_type(MYSQL_TYPE_LONGLONG);
unsigned_flag = true;
set_max_size(length);
fixed = true;
}
Item_int(const Item_int *item_arg) {
set_data_type(item_arg->data_type());
value = item_arg->value;
item_name = item_arg->item_name;
max_length = item_arg->max_length;
fixed = true;
}
Item_int(const Name_string &name_arg, longlong i, uint length) : value(i) {
set_data_type(MYSQL_TYPE_LONGLONG);
set_max_size(length);
item_name = name_arg;
fixed = true;
}
Item_int(const POS &pos, const Name_string &name_arg, longlong i, uint length)
: super(pos), value(i) {
set_data_type(MYSQL_TYPE_LONGLONG);
set_max_size(length);
item_name = name_arg;
fixed = true;
}
Item_int(const char *str_arg, uint length) {
set_data_type(MYSQL_TYPE_LONGLONG);
init(str_arg, length);
}
Item_int(const POS &pos, const char *str_arg, uint length) : super(pos) {
set_data_type(MYSQL_TYPE_LONGLONG);
init(str_arg, length);
}
Item_int(const POS &pos, const LEX_STRING &num, int dummy_error = 0)
: Item_int(pos, num, my_strtoll10(num.str, nullptr, &dummy_error),
static_cast<uint>(num.length)) {}
private:
void init(const char *str_arg, uint length);
void set_max_size(uint length) {
max_length = length;
if (!unsigned_flag && value >= 0) max_length++;
}
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
enum Type type() const override { return INT_ITEM; }
Item_result result_type() const override { return INT_RESULT; }
longlong val_int() override {
assert(fixed);
return value;
}
double val_real() override {
assert(fixed);
return static_cast<double>(value);
}
my_decimal *val_decimal(my_decimal *) override;
String *val_str(String *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_int(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override { return get_time_from_int(ltime); }
Item *clone_item() const override { return new Item_int(this); }
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
Item_num *neg() override {
value = -value;
return this;
}
uint decimal_precision() const override {
return static_cast<uint>(max_length - 1);
}
bool eq(const Item *item) const override;
bool check_partition_func_processor(uchar *) override { return false; }
bool check_function_as_value_generator(uchar *) override { return false; }
};
/**
Item_int with value==0 and length==1
*/
class Item_int_0 final : public Item_int {
public:
Item_int_0() : Item_int(NAME_STRING("0"), 0, 1) {}
explicit Item_int_0(const POS &pos) : Item_int(pos, NAME_STRING("0"), 0, 1) {}
};
/*
Item_temporal is used to store numeric representation
of time/date/datetime values for queries like:
WHERE datetime_column NOT IN
('2006-04-25 10:00:00','2006-04-25 10:02:00', ...);
and for SHOW/INFORMATION_SCHEMA purposes (see sql_show.cc)
TS-TODO: Can't we use Item_time_literal, Item_date_literal,
TS-TODO: and Item_datetime_literal for this purpose?
*/
class Item_temporal final : public Item_int {
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_temporal(enum_field_types field_type_arg, longlong i) : Item_int(i) {
assert(is_temporal_type(field_type_arg));
set_data_type(field_type_arg);
}
Item_temporal(enum_field_types field_type_arg, const Name_string &name_arg,
longlong i, uint length)
: Item_int(i) {
assert(is_temporal_type(field_type_arg));
set_data_type(field_type_arg);
max_length = length;
item_name = name_arg;
fixed = true;
}
Item *clone_item() const override {
return new Item_temporal(data_type(), value);
}
longlong val_time_temporal() override { return val_int(); }
longlong val_date_temporal() override { return val_int(); }
bool get_date(MYSQL_TIME *, my_time_flags_t) override {
assert(0);
return false;
}
bool get_time(MYSQL_TIME *) override {
assert(0);
return false;
}
};
class Item_uint : public Item_int {
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_uint(const char *str_arg, uint length) : Item_int(str_arg, length) {
unsigned_flag = true;
}
Item_uint(const POS &pos, const char *str_arg, uint length)
: Item_int(pos, str_arg, length) {
unsigned_flag = true;
}
Item_uint(ulonglong i) : Item_int(i, 10) {}
Item_uint(const Name_string &name_arg, longlong i, uint length)
: Item_int(name_arg, i, length) {
unsigned_flag = true;
}
double val_real() override {
assert(fixed);
return ulonglong2double(static_cast<ulonglong>(value));
}
String *val_str(String *) override;
Item *clone_item() const override {
return new Item_uint(item_name, value, max_length);
}
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
Item_num *neg() override;
uint decimal_precision() const override { return max_length; }
};
/* decimal (fixed point) constant */
class Item_decimal : public Item_num {
typedef Item_num super;
protected:
my_decimal decimal_value;
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_decimal(const POS &pos, const char *str_arg, uint length,
const CHARSET_INFO *charset);
Item_decimal(const Name_string &name_arg, const my_decimal *val_arg,
uint decimal_par, uint length);
Item_decimal(my_decimal *value_par);
Item_decimal(longlong val, bool unsig);
Item_decimal(double val);
Item_decimal(const uchar *bin, int precision, int scale);
enum Type type() const override { return DECIMAL_ITEM; }
Item_result result_type() const override { return DECIMAL_RESULT; }
longlong val_int() override;
double val_real() override;
String *val_str(String *) override;
my_decimal *val_decimal(my_decimal *) override { return &decimal_value; }
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_decimal(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_decimal(ltime);
}
Item *clone_item() const override {
return new Item_decimal(item_name, &decimal_value, decimals, max_length);
}
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
Item_num *neg() override {
my_decimal_neg(&decimal_value);
unsigned_flag = !decimal_value.sign();
return this;
}
uint decimal_precision() const override { return decimal_value.precision(); }
bool eq(const Item *item) const override;
void set_decimal_value(const my_decimal *value_par);
bool check_partition_func_processor(uchar *) override { return false; }
};
class Item_float : public Item_num {
typedef Item_num super;
Name_string presentation;
public:
double value;
// Item_real() :value(0) {}
Item_float(const char *str_arg, uint length) { init(str_arg, length); }
Item_float(const POS &pos, const char *str_arg, uint length) : super(pos) {
init(str_arg, length);
}
Item_float(const Name_string name_arg, double val_arg, uint decimal_par,
uint length)
: value(val_arg) {
presentation = name_arg;
item_name = name_arg;
set_data_type(MYSQL_TYPE_DOUBLE);
decimals = (uint8)decimal_par;
max_length = length;
fixed = true;
}
Item_float(const POS &pos, const Name_string name_arg, double val_arg,
uint decimal_par, uint length)
: super(pos), value(val_arg) {
presentation = name_arg;
item_name = name_arg;
set_data_type(MYSQL_TYPE_DOUBLE);
decimals = (uint8)decimal_par;
max_length = length;
fixed = true;
}
Item_float(double value_par, uint decimal_par) : value(value_par) {
set_data_type(MYSQL_TYPE_DOUBLE);
decimals = (uint8)decimal_par;
max_length = float_length(decimal_par);
fixed = true;
}
private:
void init(const char *str_arg, uint length);
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
enum Type type() const override { return REAL_ITEM; }
double val_real() override {
assert(fixed);
return value;
}
longlong val_int() override {
assert(fixed);
if (value <= LLONG_MIN) {
return LLONG_MIN;
} else if (value > LLONG_MAX_DOUBLE) {
return LLONG_MAX;
}
return (longlong)rint(value);
}
String *val_str(String *) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_real(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_real(ltime);
}
Item *clone_item() const override {
return new Item_float(item_name, value, decimals, max_length);
}
Item_num *neg() override {
value = -value;
return this;
}
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool eq(const Item *item) const override;
};
class Item_func_pi : public Item_float {
const Name_string func_name;
public:
Item_func_pi(const POS &pos)
: Item_float(pos, null_name_string, M_PI, 6, 8),
func_name(NAME_STRING("pi()")) {}
void print(const THD *, String *str, enum_query_type) const override {
str->append(func_name);
}
};
class Item_string : public Item_basic_constant {
typedef Item_basic_constant super;
protected:
explicit Item_string(const POS &pos) : super(pos), m_cs_specified(false) {
set_data_type(MYSQL_TYPE_VARCHAR);
}
void init(const char *str, size_t length, const CHARSET_INFO *cs,
Derivation dv, uint repertoire) {
set_data_type(MYSQL_TYPE_VARCHAR);
str_value.set_or_copy_aligned(str, length, cs);
collation.set(cs, dv, repertoire);
/*
We have to have a different max_length than 'length' here to
ensure that we get the right length if we do use the item
to create a new table. In this case max_length must be the maximum
number of chars for a string of this type because we in Create_field::
divide the max_length with mbmaxlen).
*/
max_length = static_cast<uint32>(str_value.numchars() * cs->mbmaxlen);
item_name.copy(str, length, cs);
decimals = DECIMAL_NOT_SPECIFIED;
// it is constant => can be used without fix_fields (and frequently used)
fixed = true;
/*
Check if the string has any character that can't be
interpreted using the relevant charset.
*/
check_well_formed_result(&str_value, false, false);
}
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
/* Create from a string, set name from the string itself. */
Item_string(const char *str, size_t length, const CHARSET_INFO *cs,
Derivation dv = DERIVATION_COERCIBLE,
uint repertoire = MY_REPERTOIRE_UNICODE30)
: m_cs_specified(false) {
init(str, length, cs, dv, repertoire);
}
Item_string(const POS &pos, const char *str, size_t length,
const CHARSET_INFO *cs, Derivation dv = DERIVATION_COERCIBLE,
uint repertoire = MY_REPERTOIRE_UNICODE30)
: super(pos), m_cs_specified(false) {
init(str, length, cs, dv, repertoire);
}
/* Just create an item and do not fill string representation */
Item_string(const CHARSET_INFO *cs, Derivation dv = DERIVATION_COERCIBLE)
: m_cs_specified(false) {
collation.set(cs, dv);
set_data_type(MYSQL_TYPE_VARCHAR);
max_length = 0;
decimals = DECIMAL_NOT_SPECIFIED;
fixed = true;
}
/* Create from the given name and string. */
Item_string(const Name_string name_par, const char *str, size_t length,
const CHARSET_INFO *cs, Derivation dv = DERIVATION_COERCIBLE,
uint repertoire = MY_REPERTOIRE_UNICODE30)
: m_cs_specified(false) {
str_value.set_or_copy_aligned(str, length, cs);
collation.set(cs, dv, repertoire);
set_data_type(MYSQL_TYPE_VARCHAR);
max_length = static_cast<uint32>(str_value.numchars() * cs->mbmaxlen);
item_name = name_par;
decimals = DECIMAL_NOT_SPECIFIED;
// it is constant => can be used without fix_fields (and frequently used)
fixed = true;
}
Item_string(const POS &pos, const Name_string name_par, const char *str,
size_t length, const CHARSET_INFO *cs,
Derivation dv = DERIVATION_COERCIBLE,
uint repertoire = MY_REPERTOIRE_UNICODE30)
: super(pos), m_cs_specified(false) {
str_value.set_or_copy_aligned(str, length, cs);
collation.set(cs, dv, repertoire);
set_data_type(MYSQL_TYPE_VARCHAR);
max_length = static_cast<uint32>(str_value.numchars() * cs->mbmaxlen);
item_name = name_par;
decimals = DECIMAL_NOT_SPECIFIED;
// it is constant => can be used without fix_fields (and frequently used)
fixed = true;
}
/* Create from the given name and string. */
Item_string(const POS &pos, const Name_string name_par,
const LEX_CSTRING &literal, const CHARSET_INFO *cs,
Derivation dv = DERIVATION_COERCIBLE,
uint repertoire = MY_REPERTOIRE_UNICODE30)
: super(pos), m_cs_specified(false) {
str_value.set_or_copy_aligned(literal.str ? literal.str : "",
literal.str ? literal.length : 0, cs);
collation.set(cs, dv, repertoire);
set_data_type(MYSQL_TYPE_VARCHAR);
max_length = static_cast<uint32>(str_value.numchars() * cs->mbmaxlen);
item_name = name_par;
decimals = DECIMAL_NOT_SPECIFIED;
// it is constant => can be used without fix_fields (and frequently used)
fixed = true;
}
/*
This is used in stored procedures to avoid memory leaks and
does a deep copy of its argument.
*/
void set_str_with_copy(const char *str_arg, uint length_arg) {
str_value.copy(str_arg, length_arg, collation.collation);
max_length = static_cast<uint32>(str_value.numchars() *
collation.collation->mbmaxlen);
}
bool set_str_with_copy(const char *str_arg, uint length_arg,
const CHARSET_INFO *from_cs);
/// Update collation of string value to be according to item's collation
void set_value_collation() { str_value.set_charset(collation.collation); }
void set_repertoire_from_value() {
collation.repertoire = my_string_repertoire(
str_value.charset(), str_value.ptr(), str_value.length());
}
enum Type type() const override { return STRING_ITEM; }
double val_real() override;
longlong val_int() override;
String *val_str(String *) override {
assert(fixed);
return &str_value;
}
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_string(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_string(ltime);
}
Item_result result_type() const override { return STRING_RESULT; }
bool eq(const Item *item) const override;
bool eq_binary(const Item_string *item) const {
return !stringcmp(&str_value, &item->str_value);
}
Item *clone_item() const override {
return new Item_string(static_cast<Name_string>(item_name), str_value.ptr(),
str_value.length(), collation.collation);
}
inline void append(char *str, size_t length) {
str_value.append(str, length);
max_length = static_cast<uint32>(str_value.numchars() *
collation.collation->mbmaxlen);
}
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool check_partition_func_processor(uchar *) override { return false; }
/**
Return true if character-set-introducer was explicitly specified in the
original query for this item (text literal).
This operation is to be called from Item_string::print(). The idea is
that when a query is generated (re-constructed) from the Item-tree,
character-set-introducers should appear only for those literals, where
they were explicitly specified by the user. Otherwise, that may lead to
loss collation information (character set introducers implies default
collation for the literal).
Basically, that makes sense only for views and hopefully will be gone
one day when we start using original query as a view definition.
@return This operation returns the value of m_cs_specified attribute.
@retval true if character set introducer was explicitly specified in
the original query.
@retval false otherwise.
*/
inline bool is_cs_specified() const { return m_cs_specified; }
/**
Set the value of m_cs_specified attribute.
m_cs_specified attribute shows whether character-set-introducer was
explicitly specified in the original query for this text literal or
not. The attribute makes sense (is used) only for views.
This operation is to be called from the parser during parsing an input
query.
*/
inline void set_cs_specified(bool cs_specified) {
m_cs_specified = cs_specified;
}
void mark_result_as_const() { str_value.mark_as_const(); }
private:
bool m_cs_specified;
};
longlong longlong_from_string_with_check(const CHARSET_INFO *cs,
const char *cptr, const char *end,
int unsigned_target);
double double_from_string_with_check(const CHARSET_INFO *cs, const char *cptr,
const char *end);
class Item_static_string_func : public Item_string {
const Name_string func_name;
public:
Item_static_string_func(const Name_string &name_par, const char *str,
size_t length, const CHARSET_INFO *cs,
Derivation dv = DERIVATION_COERCIBLE)
: Item_string(null_name_string, str, length, cs, dv),
func_name(name_par) {}
Item_static_string_func(const POS &pos, const Name_string &name_par,
const char *str, size_t length,
const CHARSET_INFO *cs,
Derivation dv = DERIVATION_COERCIBLE)
: Item_string(pos, null_name_string, str, length, cs, dv),
func_name(name_par) {}
void print(const THD *, String *str, enum_query_type) const override {
str->append(func_name);
}
bool check_partition_func_processor(uchar *) override { return true; }
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->banned_function_name = func_name.ptr();
return true;
}
};
/* for show tables */
class Item_partition_func_safe_string : public Item_string {
public:
Item_partition_func_safe_string(const Name_string name, size_t length,
const CHARSET_INFO *cs = nullptr)
: Item_string(name, NullS, 0, cs) {
max_length = static_cast<uint32>(length);
}
};
class Item_blob final : public Item_partition_func_safe_string {
public:
Item_blob(const char *name, size_t length)
: Item_partition_func_safe_string(Name_string(name, strlen(name)), length,
&my_charset_bin) {
set_data_type(MYSQL_TYPE_BLOB);
}
enum Type type() const override { return STRING_ITEM; }
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->err_code = func_arg->get_unnamed_function_error_code();
return true;
}
};
/**
Item_empty_string -- is a utility class to put an item into List<Item>
which is then used in protocol.send_result_set_metadata() when sending SHOW
output to the client.
*/
class Item_empty_string : public Item_partition_func_safe_string {
public:
Item_empty_string(const char *header, size_t length,
const CHARSET_INFO *cs = nullptr)
: Item_partition_func_safe_string(
Name_string(header, strlen(header)), 0,
cs ? cs : &my_charset_utf8mb3_general_ci) {
max_length = static_cast<uint32>(length * collation.collation->mbmaxlen);
}
void make_field(Send_field *field) override;
};
class Item_return_int : public Item_int {
public:
Item_return_int(const char *name_arg, uint length,
enum_field_types field_type_arg, longlong value_arg = 0)
: Item_int(Name_string(name_arg, name_arg ? strlen(name_arg) : 0),
value_arg, length) {
set_data_type(field_type_arg);
unsigned_flag = true;
}
};
class Item_hex_string : public Item_basic_constant {
typedef Item_basic_constant super;
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_hex_string();
explicit Item_hex_string(const POS &pos) : super(pos) {
set_data_type(MYSQL_TYPE_VARCHAR);
}
Item_hex_string(const POS &pos, const LEX_STRING &literal);
enum Type type() const override { return HEX_BIN_ITEM; }
double val_real() override {
assert(fixed);
return (double)(ulonglong)Item_hex_string::val_int();
}
longlong val_int() override;
Item *clone_item() const override;
String *val_str(String *) override {
assert(fixed);
return &str_value;
}
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_string(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_string(ltime);
}
Item_result result_type() const override { return STRING_RESULT; }
Item_result numeric_context_result_type() const override {
return INT_RESULT;
}
Item_result cast_to_int_type() const override { return INT_RESULT; }
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool eq(const Item *item) const override;
bool check_partition_func_processor(uchar *) override { return false; }
static LEX_CSTRING make_hex_str(const char *str, size_t str_length);
uint decimal_precision() const override;
private:
void hex_string_init(const char *str, uint str_length);
};
class Item_bin_string final : public Item_hex_string {
typedef Item_hex_string super;
public:
Item_bin_string(const char *str, size_t str_length) {
bin_string_init(str, str_length);
}
Item_bin_string(const POS &pos, const LEX_STRING &literal) : super(pos) {
bin_string_init(literal.str, literal.length);
}
static LEX_CSTRING make_bin_str(const char *str, size_t str_length);
private:
void bin_string_init(const char *str, size_t str_length);
};
/**
Item with result field.
It adds to an Item a "result_field" Field member. This is for an item which
may have a result (e.g. Item_func), and may store this result into a field;
usually this field is a column of an internal temporary table. So the
function may be evaluated by save_in_field(), storing result into
result_field in tmp table. Then this result can be copied from tmp table to
a following tmp table (e.g. GROUP BY table then ORDER BY table), or to a row
buffer and back, as we want to avoid multiple evaluations of the Item, first
because of performance, second because that evaluation may have side
effects, e.g. SLEEP, GET_LOCK, RAND, window functions doing
accumulations...
Item_field and Item_ref also have a "result_field" for a similar goal.
Literals don't need such "result_field" as their value is readily
available.
*/
class Item_result_field : public Item {
protected:
Field *result_field{nullptr}; /* Save result here */
public:
Item_result_field() = default;
explicit Item_result_field(const POS &pos) : Item(pos) {}
// Constructor used for Item_sum/Item_cond_and/or (see Item comment)
Item_result_field(THD *thd, const Item_result_field *item)
: Item(thd, item), result_field(item->result_field) {}
Field *get_tmp_table_field() override { return result_field; }
Field *tmp_table_field(TABLE *) override { return result_field; }
table_map used_tables() const override { return 1; }
/**
Resolve type-related information for this item, such as result field type,
maximum size, precision, signedness, character set and collation.
Also check compatibility of argument types and return error when applicable.
Also adjust nullability when applicable.
@param thd thread handler
@returns false if success, true if error
*/
virtual bool resolve_type(THD *thd) = 0;
void set_result_field(Field *field) override { result_field = field; }
bool is_result_field() const override { return true; }
Field *get_result_field() const override { return result_field; }
void cleanup() override;
bool check_function_as_value_generator(uchar *) override { return false; }
bool mark_field_in_map(uchar *arg) override {
bool rc = Item::mark_field_in_map(arg);
if (result_field) // most likely result_field will be read too
rc |= Item::mark_field_in_map(pointer_cast<Mark_field *>(arg),
result_field);
return rc;
}
longlong llrint_with_overflow_check(double realval) {
if (realval < LLONG_MIN || realval > LLONG_MAX_DOUBLE) {
raise_integer_overflow();
return error_int();
}
return llrint(realval);
}
void raise_numeric_overflow(const char *type_name);
double raise_float_overflow() {
raise_numeric_overflow("DOUBLE");
return 0.0;
}
longlong raise_integer_overflow() {
raise_numeric_overflow(unsigned_flag ? "BIGINT UNSIGNED" : "BIGINT");
return 0;
}
int raise_decimal_overflow() {
raise_numeric_overflow(unsigned_flag ? "DECIMAL UNSIGNED" : "DECIMAL");
return E_DEC_OVERFLOW;
}
};
class Item_ref : public Item_ident {
protected:
void set_properties();
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
enum Ref_Type { REF, VIEW_REF, OUTER_REF, AGGREGATE_REF, NULL_HELPER_REF };
// If true, depended_from information of this ref was pushed down to
// underlying field.
bool pusheddown_depended_from{false};
private:
Field *result_field{nullptr}; /* Save result here */
protected:
/// Indirect pointer to the referenced item.
Item **m_ref_item{nullptr};
public:
Item_ref(const POS &pos, const char *db_name_arg, const char *table_name_arg,
const char *field_name_arg)
: Item_ident(pos, db_name_arg, table_name_arg, field_name_arg) {}
/*
This constructor is used in two scenarios:
A) *item = NULL
No initialization is performed, fix_fields() call will be necessary.
B) *item points to an Item this Item_ref will refer to. This is
used for GROUP BY. fix_fields() will not be called in this case,
so we call set_properties to make this item "fixed". set_properties
performs a subset of action Item_ref::fix_fields does, and this subset
is enough for Item_ref's used in GROUP BY.
TODO we probably fix a superset of problems like in BUG#6658. Check this
with Bar, and if we have a more broader set of problems like this.
*/
Item_ref(Name_resolution_context *context_arg, Item **item,
const char *db_name_arg, const char *table_name_arg,
const char *field_name_arg, bool alias_of_expr_arg = false);
Item_ref(Name_resolution_context *context_arg, Item **item,
const char *field_name_arg);
/* Constructor need to process subselect with temporary tables (see Item) */
Item_ref(THD *thd, Item_ref *item)
: Item_ident(thd, item),
result_field(item->result_field),
m_ref_item(item->m_ref_item) {}
/// @returns the item referenced by this object
Item *ref_item() const { return *m_ref_item; }
/// @returns the pointer to the item referenced by this object
Item **ref_pointer() const { return m_ref_item; }
void link_referenced_item() { ref_item()->increment_ref_count(); }
enum Type type() const override { return REF_ITEM; }
bool eq(const Item *item) const override {
const Item *it = item->real_item();
// May search for a referenced item that is not yet resolved:
if (m_ref_item == nullptr) return false;
return ref_item()->eq(it);
}
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override;
longlong val_date_temporal() override;
my_decimal *val_decimal(my_decimal *) override;
bool val_bool() override;
String *val_str(String *tmp) override;
bool val_json(Json_wrapper *result) override;
bool is_null() override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool send(Protocol *prot, String *tmp) override;
void make_field(Send_field *field) override;
bool fix_fields(THD *, Item **) override;
void fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) override;
Item_result result_type() const override { return ref_item()->result_type(); }
TYPELIB *get_typelib() const override { return ref_item()->get_typelib(); }
Field *get_tmp_table_field() override {
return result_field != nullptr ? result_field
: ref_item()->get_tmp_table_field();
}
Item *get_tmp_table_item(THD *thd) override;
table_map used_tables() const override {
if (depended_from != nullptr) return OUTER_REF_TABLE_BIT;
const table_map map = ref_item()->used_tables();
if (map != 0) return map;
// rollup constant: ensure it is non-constant by returning RAND_TABLE_BIT
if (has_grouping_set_dep()) return RAND_TABLE_BIT;
return 0;
}
void update_used_tables() override {
if (depended_from == nullptr) ref_item()->update_used_tables();
/*
Reset all flags except GROUP BY modifier, since we do not mark the rollup
expression itself.
*/
m_accum_properties &= PROP_HAS_GROUPING_SET_DEP;
add_accum_properties(ref_item());
}
table_map not_null_tables() const override {
/*
It can happen that our 'depended_from' member is set but the
'depended_from' member of the referenced item is not (example: if a
field in a subquery belongs to an outer merged view), so we first test
ours:
*/
return depended_from != nullptr ? OUTER_REF_TABLE_BIT
: ref_item()->not_null_tables();
}
void set_result_field(Field *field) override { result_field = field; }
bool is_result_field() const override { return true; }
Field *get_result_field() const override { return result_field; }
Item *real_item() override {
// May look into unresolved Item_ref objects
if (m_ref_item == nullptr) return this;
return ref_item()->real_item();
}
const Item *real_item() const override {
// May look into unresolved Item_ref objects
if (m_ref_item == nullptr) return this;
return ref_item()->real_item();
}
bool walk(Item_processor processor, enum_walk walk, uchar *arg) override {
// Unresolved items may have m_ref_item = nullptr
return ((walk & enum_walk::PREFIX) && (this->*processor)(arg)) ||
(m_ref_item != nullptr ? ref_item()->walk(processor, walk, arg)
: false) ||
((walk & enum_walk::POSTFIX) && (this->*processor)(arg));
}
Item *transform(Item_transformer, uchar *arg) override;
Item *compile(Item_analyzer analyzer, uchar **arg_p,
Item_transformer transformer, uchar *arg_t) override;
void traverse_cond(Cond_traverser traverser, void *arg,
traverse_order order) override {
assert(ref_item() != nullptr);
if (order == PREFIX) (*traverser)(this, arg);
ref_item()->traverse_cond(traverser, arg, order);
if (order == POSTFIX) (*traverser)(this, arg);
}
bool explain_subquery_checker(uchar **) override {
/*
Always return false: we don't need to go deeper into referenced
expression tree since we have to mark aliased subqueries at
their original places (select list, derived tables), not by
references from other expression (order by etc).
*/
return false;
}
bool clean_up_after_removal(uchar *arg) override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
void cleanup() override;
Item_field *field_for_view_update() override {
return ref_item()->field_for_view_update();
}
virtual Ref_Type ref_type() const { return REF; }
// Row emulation: forwarding of ROW-related calls to ref
uint cols() const override {
assert(m_ref_item != nullptr);
return result_type() == ROW_RESULT ? ref_item()->cols() : 1;
}
Item *element_index(uint i) override {
assert(m_ref_item != nullptr);
return result_type() == ROW_RESULT ? ref_item()->element_index(i) : this;
}
Item **addr(uint i) override {
assert(m_ref_item != nullptr);
return result_type() == ROW_RESULT ? ref_item()->addr(i) : nullptr;
}
bool check_cols(uint c) override {
assert(m_ref_item != nullptr);
return result_type() == ROW_RESULT ? ref_item()->check_cols(c)
: Item::check_cols(c);
}
bool null_inside() override {
assert(m_ref_item != nullptr);
return result_type() == ROW_RESULT ? ref_item()->null_inside() : false;
}
void bring_value() override {
assert(m_ref_item != nullptr);
if (result_type() == ROW_RESULT) ref_item()->bring_value();
}
bool get_time(MYSQL_TIME *ltime) override {
assert(fixed);
const bool result = ref_item()->get_time(ltime);
null_value = ref_item()->null_value;
return result;
}
bool basic_const_item() const override { return false; }
bool is_outer_field() const override {
assert(fixed);
assert(ref_item());
return ref_item()->is_outer_field();
}
bool created_by_in2exists() const override {
return ref_item()->created_by_in2exists();
}
bool repoint_const_outer_ref(uchar *arg) override;
bool is_non_const_over_literals(uchar *) override { return true; }
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->err_code = func_arg->get_unnamed_function_error_code();
return true;
}
Item_result cast_to_int_type() const override {
return ref_item()->cast_to_int_type();
}
bool is_valid_for_pushdown(uchar *arg) override {
return ref_item()->is_valid_for_pushdown(arg);
}
bool check_column_in_window_functions(uchar *arg) override {
return ref_item()->check_column_in_window_functions(arg);
}
bool check_column_in_group_by(uchar *arg) override {
return ref_item()->check_column_in_group_by(arg);
}
bool collect_item_field_or_ref_processor(uchar *arg) override;
};
/**
Class for fields from derived tables and views.
The same as Item_ref, but call fix_fields() of reference if
not called yet.
*/
class Item_view_ref final : public Item_ref {
typedef Item_ref super;
public:
Item_view_ref(Name_resolution_context *context_arg, Item **item,
const char *db_name_arg, const char *alias_name_arg,
const char *table_name_arg, const char *field_name_arg,
Table_ref *tr)
: Item_ref(context_arg, item, db_name_arg, alias_name_arg,
field_name_arg),
first_inner_table(nullptr) {
if (tr->is_view()) {
m_orig_db_name = db_name_arg;
m_orig_table_name = table_name_arg;
} else {
assert(db_name_arg == nullptr);
m_orig_table_name = table_name_arg;
}
m_table_ref = tr;
if (m_table_ref->is_inner_table_of_outer_join()) {
set_nullable(true);
first_inner_table = m_table_ref->any_outer_leaf_table();
}
}
/*
We share one underlying Item_field, so we have to disable
build_equal_items_for_cond().
TODO: Implement multiple equality optimization for views.
*/
bool subst_argument_checker(uchar **) override { return false; }
bool fix_fields(THD *, Item **) override;
/**
Takes into account whether an Item in a derived table / view is part of an
inner table of an outer join.
*/
table_map used_tables() const override {
const Item_ref *inner_ref = this;
const Item *inner_item;
/*
Check whether any of the inner expressions is an outer reference,
and if it is, return OUTER_REF_TABLE_BIT.
*/
while (true) {
if (inner_ref->depended_from != nullptr) {
return OUTER_REF_TABLE_BIT;
}
inner_item = inner_ref->ref_item();
if (inner_item->type() != REF_ITEM) break;
inner_ref = down_cast<const Item_ref *>(inner_item);
}
const Item_field *field = inner_item->type() == FIELD_ITEM
? down_cast<const Item_field *>(inner_item)
: nullptr;
// If the field is an outer reference, return OUTER_REF_TABLE_BIT
if (field != nullptr && field->depended_from != nullptr) {
return OUTER_REF_TABLE_BIT;
}
/*
View references with expressions that are not deemed constant during
execution, or when they are constants but the merged view/derived table
was not from the inner side of an outer join, simply return the used
tables of the underlying item. A "const" field that comes from an inner
side of an outer join is not constant, since NULL values are issued
when there are no matching rows in the inner table(s).
*/
if (!inner_item->const_for_execution() || first_inner_table == nullptr) {
return inner_item->used_tables();
}
/*
This is a const expression on the inner side of an outer join.
Augment its used table information with the map of an inner table from
the outer join nest. field can be nullptr if it is from a const table.
In this case, returning the table's original table map is required by
the join optimizer.
*/
return field != nullptr
? field->m_table_ref->map()
: inner_item->used_tables() | first_inner_table->map();
}
bool eq(const Item *item) const override;
Item *get_tmp_table_item(THD *thd) override {
DBUG_TRACE;
Item *item = Item_ref::get_tmp_table_item(thd);
item->item_name = item_name;
return item;
}
Ref_Type ref_type() const override { return VIEW_REF; }
bool check_column_privileges(uchar *arg) override;
bool mark_field_in_map(uchar *arg) override {
/*
If this referenced column is marked as used, flag underlying
selected item from a derived table/view as used.
*/
auto mark_field = (Mark_field *)arg;
return get_result_field()
? Item::mark_field_in_map(mark_field, get_result_field())
: false;
}
longlong val_int() override;
double val_real() override;
my_decimal *val_decimal(my_decimal *dec) override;
String *val_str(String *str) override;
bool val_bool() override;
bool val_json(Json_wrapper *wr) override;
bool is_null() override;
bool send(Protocol *prot, String *tmp) override;
bool collect_item_field_or_view_ref_processor(uchar *arg) override;
Item *replace_item_view_ref(uchar *arg) override;
Item *replace_view_refs_with_clone(uchar *arg) override;
Table_ref *get_first_inner_table() const { return first_inner_table; }
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
private:
/// @return true if item is from a null-extended row from an outer join
bool has_null_row() const {
return first_inner_table && first_inner_table->table->has_null_row();
}
/**
If this column belongs to a view that is an inner table of an outer join,
then this field points to the first leaf table of the view, otherwise NULL.
*/
Table_ref *first_inner_table;
};
/*
Class for outer fields.
An object of this class is created when the select where the outer field was
resolved is a grouping one. After it has been fixed the ref field will point
to an Item_ref object which will be used to access the field.
The ref field may also point to an Item_field instance.
See also comments of the Item_field::fix_outer_field() function.
*/
class Item_outer_ref final : public Item_ref {
typedef Item_ref super;
private:
/**
Qualifying query of this outer ref (i.e. query block which owns FROM of
table which this Item references).
*/
Query_block *qualifying;
public:
Item *outer_ref;
/* The aggregate function under which this outer ref is used, if any. */
Item_sum *in_sum_func;
/*
true <=> that the outer_ref is already present in the select list
of the outer select.
*/
bool found_in_select_list;
Item_outer_ref(Name_resolution_context *context_arg, Item_ident *ident_arg,
Query_block *qualifying)
: Item_ref(context_arg, nullptr, ident_arg->db_name,
ident_arg->table_name, ident_arg->field_name, false),
qualifying(qualifying),
outer_ref(ident_arg),
in_sum_func(nullptr),
found_in_select_list(false) {
m_ref_item = &outer_ref;
link_referenced_item();
set_properties();
// keep any select list alias:
item_name = ident_arg->item_name;
fixed = false;
}
Item_outer_ref(Name_resolution_context *context_arg, Item **item,
const char *db_name_arg, const char *table_name_arg,
const char *field_name_arg, bool alias_of_expr_arg,
Query_block *qualifying)
: Item_ref(context_arg, item, db_name_arg, table_name_arg, field_name_arg,
alias_of_expr_arg),
qualifying(qualifying),
outer_ref(nullptr),
in_sum_func(nullptr),
found_in_select_list(true) {}
bool fix_fields(THD *, Item **) override;
void fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) override;
table_map used_tables() const override {
return ref_item()->used_tables() == 0 ? 0 : OUTER_REF_TABLE_BIT;
}
table_map not_null_tables() const override { return 0; }
Ref_Type ref_type() const override { return OUTER_REF; }
Item *replace_outer_ref(uchar *) override;
};
/*
An object of this class is like Item_ref, and
sets owner->was_null=true if it has returned a NULL value from any
val_XXX() function. This allows to inject an Item_ref_null_helper
object into subquery and then check if the subquery has produced a row
with NULL value.
*/
class Item_ref_null_helper final : public Item_ref {
typedef Item_ref super;
protected:
Item_in_subselect *owner;
public:
Item_ref_null_helper(Name_resolution_context *context_arg,
Item_in_subselect *master, Item **item)
: super(context_arg, item, "", "", ""), owner(master) {}
Item_ref_null_helper(const Item_ref_null_helper &ref_null_helper, Item **item)
: Item_ref_null_helper(ref_null_helper.context, ref_null_helper.owner,
item) {}
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override;
longlong val_date_temporal() override;
String *val_str(String *s) override;
my_decimal *val_decimal(my_decimal *) override;
bool val_bool() override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
Ref_Type ref_type() const override { return NULL_HELPER_REF; }
/*
we add RAND_TABLE_BIT to prevent moving this item from HAVING to WHERE
*/
table_map used_tables() const override {
return (depended_from ? OUTER_REF_TABLE_BIT
: ref_item()->used_tables() | RAND_TABLE_BIT);
}
};
/*
The following class is used to optimize comparing of bigint columns.
We need to save the original item ('ref') to be able to call
ref->save_in_field(). This is used to create index search keys.
An instance of Item_int_with_ref may have signed or unsigned integer value.
*/
class Item_int_with_ref : public Item_int {
protected:
Item *ref;
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override {
return ref->save_in_field(field, no_conversions);
}
public:
Item_int_with_ref(enum_field_types field_type, longlong i, Item *ref_arg,
bool unsigned_arg)
: Item_int(i), ref(ref_arg) {
set_data_type(field_type);
unsigned_flag = unsigned_arg;
}
Item *clone_item() const override;
Item *real_item() override { return ref; }
const Item *real_item() const override { return ref; }
};
/*
Similar to Item_int_with_ref, but to optimize comparing of temporal columns.
*/
class Item_temporal_with_ref : public Item_int_with_ref {
public:
Item_temporal_with_ref(enum_field_types field_type_arg, uint8 decimals_arg,
longlong i, Item *ref_arg, bool unsigned_arg)
: Item_int_with_ref(field_type_arg, i, ref_arg, unsigned_arg) {
decimals = decimals_arg;
}
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool get_date(MYSQL_TIME *, my_time_flags_t) override {
assert(0);
return true;
}
bool get_time(MYSQL_TIME *) override {
assert(0);
return true;
}
};
/*
Item_datetime_with_ref is used to optimize queries like:
SELECT ... FROM t1 WHERE date_or_datetime_column = 20110101101010;
The numeric constant is replaced to Item_datetime_with_ref
by convert_constant_item().
*/
class Item_datetime_with_ref final : public Item_temporal_with_ref {
public:
/**
Constructor for Item_datetime_with_ref.
@param field_type_arg Data type: MYSQL_TYPE_DATE or MYSQL_TYPE_DATETIME
@param decimals_arg Number of fractional digits.
@param i Temporal value in packed format.
@param ref_arg Pointer to the original numeric Item.
*/
Item_datetime_with_ref(enum_field_types field_type_arg, uint8 decimals_arg,
longlong i, Item *ref_arg)
: Item_temporal_with_ref(field_type_arg, decimals_arg, i, ref_arg, true) {
}
Item *clone_item() const override;
longlong val_date_temporal() override { return val_int(); }
longlong val_time_temporal() override {
assert(0);
return val_int();
}
};
/*
Item_time_with_ref is used to optimize queries like:
SELECT ... FROM t1 WHERE time_column = 20110101101010;
The numeric constant is replaced to Item_time_with_ref
by convert_constant_item().
*/
class Item_time_with_ref final : public Item_temporal_with_ref {
public:
/**
Constructor for Item_time_with_ref.
@param decimals_arg Number of fractional digits.
@param i Temporal value in packed format.
@param ref_arg Pointer to the original numeric Item.
*/
Item_time_with_ref(uint8 decimals_arg, longlong i, Item *ref_arg)
: Item_temporal_with_ref(MYSQL_TYPE_TIME, decimals_arg, i, ref_arg,
false) {}
Item *clone_item() const override;
longlong val_time_temporal() override { return val_int(); }
longlong val_date_temporal() override {
assert(0);
return val_int();
}
};
/**
This is used for segregating rows in groups (e.g. GROUP BY, windows), to
detect boundaries of groups.
It caches a value, which is representative of the group, and can compare it
to another row, and update its value when entering a new group.
*/
class Cached_item {
protected:
Item *item; ///< The item whose value to cache.
explicit Cached_item(Item *i) : item(i) {}
public:
bool null_value{true};
virtual ~Cached_item() = default;
/**
Compare the value associated with the item with the stored value.
If they are different, update the stored value with item's value and
return true.
@returns true if item's value and stored value are different.
Notice that first call is to establish an initial value and
return value should be ignored.
*/
virtual bool cmp() = 0;
Item *get_item() const { return item; }
Item **get_item_ptr() { return &item; }
};
class Cached_item_str : public Cached_item {
// Make sure value.ptr() is never nullptr, as not all collation functions
// are prepared for that (even with empty strings).
String value{"", 0, &my_charset_bin};
String tmp_value;
public:
explicit Cached_item_str(Item *arg) : Cached_item(arg) {}
bool cmp() override;
};
/// Cached_item subclass for JSON values.
class Cached_item_json : public Cached_item {
Json_wrapper *m_value; ///< The cached JSON value.
public:
explicit Cached_item_json(Item *item);
~Cached_item_json() override;
bool cmp() override;
};
class Cached_item_real : public Cached_item {
double value{0.0};
public:
explicit Cached_item_real(Item *item_par) : Cached_item(item_par) {}
bool cmp() override;
};
class Cached_item_int : public Cached_item {
longlong value{0};
public:
explicit Cached_item_int(Item *item_par) : Cached_item(item_par) {}
bool cmp() override;
};
class Cached_item_temporal : public Cached_item {
longlong value{0};
public:
explicit Cached_item_temporal(Item *item_par) : Cached_item(item_par) {}
bool cmp() override;
};
class Cached_item_decimal : public Cached_item {
my_decimal value;
public:
explicit Cached_item_decimal(Item *item_par) : Cached_item(item_par) {}
bool cmp() override;
};
class Item_default_value final : public Item_field {
typedef Item_field super;
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_default_value(const POS &pos, Item *a = nullptr)
: super(pos, nullptr, nullptr, nullptr), arg(a) {}
bool do_itemize(Parse_context *pc, Item **res) override;
enum Type type() const override { return DEFAULT_VALUE_ITEM; }
bool eq(const Item *item) const override;
bool fix_fields(THD *, Item **) override;
void bind_fields() override;
void cleanup() override { Item::cleanup(); }
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
table_map used_tables() const override { return 0; }
Item *get_tmp_table_item(THD *thd) override { return copy_or_same(thd); }
bool collect_item_field_or_view_ref_processor(uchar *arg) override;
Item *replace_item_field(uchar *) override;
/*
No additional privilege check for default values, as the walk() function
checks privileges for the underlying column through the argument.
*/
bool check_column_privileges(uchar *) override { return false; }
bool walk(Item_processor processor, enum_walk walk, uchar *args) override {
return ((walk & enum_walk::PREFIX) && (this->*processor)(args)) ||
(arg && arg->walk(processor, walk, args)) ||
((walk & enum_walk::POSTFIX) && (this->*processor)(args));
}
bool check_gcol_depend_default_processor(uchar *args) override {
return !my_strcasecmp(system_charset_info, field_name,
reinterpret_cast<char *>(args));
}
Item *transform(Item_transformer transformer, uchar *args) override;
Item *argument() const { return arg; }
private:
/// The argument for this function
Item *arg;
/// Pointer to row buffer that was used to calculate field value offset
uchar *m_rowbuffer_saved{nullptr};
};
/*
Item_insert_value -- an implementation of VALUES() function.
You can use the VALUES(col_name) function in the UPDATE clause
to refer to column values from the INSERT portion of the INSERT
... UPDATE statement. In other words, VALUES(col_name) in the
UPDATE clause refers to the value of col_name that would be
inserted, had no duplicate-key conflict occurred.
In all other places this function returns NULL.
*/
class Item_insert_value final : public Item_field {
protected:
type_conversion_status save_in_field_inner(Field *field_arg,
bool no_conversions) override {
return Item_field::save_in_field_inner(field_arg, no_conversions);
}
public:
/**
Constructs an Item_insert_value that represents a call to the deprecated
VALUES function.
*/
Item_insert_value(const POS &pos, Item *a)
: Item_field(pos, nullptr, nullptr, nullptr),
arg(a),
m_is_values_function(true) {}
/**
Constructs an Item_insert_value that represents a derived table that wraps a
table value constructor.
*/
Item_insert_value(Name_resolution_context *context_arg, Item *a)
: Item_field(context_arg, nullptr, nullptr, nullptr),
arg(a),
m_is_values_function(false) {}
bool do_itemize(Parse_context *pc, Item **res) override {
if (skip_itemize(res)) return false;
return Item_field::do_itemize(pc, res) || arg->itemize(pc, &arg);
}
enum Type type() const override { return INSERT_VALUE_ITEM; }
bool eq(const Item *item) const override;
bool fix_fields(THD *, Item **) override;
void bind_fields() override;
void cleanup() override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
/*
We use RAND_TABLE_BIT to prevent Item_insert_value from
being treated as a constant and precalculated before execution
*/
table_map used_tables() const override { return RAND_TABLE_BIT; }
bool walk(Item_processor processor, enum_walk walk, uchar *args) override {
return ((walk & enum_walk::PREFIX) && (this->*processor)(args)) ||
arg->walk(processor, walk, args) ||
((walk & enum_walk::POSTFIX) && (this->*processor)(args));
}
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->banned_function_name = "values";
return true;
}
private:
/// The argument for this function
Item *arg;
/// Pointer to row buffer that was used to calculate field value offset
uchar *m_rowbuffer_saved{nullptr};
/**
This flag is true if the item represents a call to the deprecated VALUES
function. It is false if the item represents a derived table that wraps a
table value constructor.
*/
const bool m_is_values_function;
};
/**
Represents NEW/OLD version of field of row which is
changed/read in trigger.
Note: For this item main part of actual binding to Field object happens
not during fix_fields() call (like for Item_field) but right after
parsing of trigger definition, when table is opened, with special
setup_field() call. On fix_fields() stage we simply choose one of
two Field instances representing either OLD or NEW version of this
field.
*/
class Item_trigger_field final : public Item_field,
private Settable_routine_parameter {
public:
/* Is this item represents row from NEW or OLD row ? */
enum_trigger_variable_type trigger_var_type;
/* Next in list of all Item_trigger_field's in trigger */
Item_trigger_field *next_trg_field;
/*
Next list of Item_trigger_field's in "sp_head::
m_list_of_trig_fields_item_lists".
*/
SQL_I_List<Item_trigger_field> *next_trig_field_list;
/* Index of the field in the TABLE::field array */
uint field_idx;
/* Pointer to an instance of Table_trigger_field_support interface */
Table_trigger_field_support *triggers;
Item_trigger_field(Name_resolution_context *context_arg,
enum_trigger_variable_type trigger_var_type_arg,
const char *field_name_arg, Access_bitmask priv,
const bool ro)
: Item_field(context_arg, nullptr, nullptr, field_name_arg),
trigger_var_type(trigger_var_type_arg),
next_trig_field_list(nullptr),
field_idx((uint)-1),
want_privilege(priv),
table_grants(nullptr),
read_only(ro) {}
Item_trigger_field(const POS &pos,
enum_trigger_variable_type trigger_var_type_arg,
const char *field_name_arg, Access_bitmask priv,
const bool ro)
: Item_field(pos, nullptr, nullptr, field_name_arg),
trigger_var_type(trigger_var_type_arg),
field_idx((uint)-1),
want_privilege(priv),
table_grants(nullptr),
read_only(ro) {}
void setup_field(Table_trigger_field_support *table_triggers,
GRANT_INFO *table_grant_info);
enum Type type() const override { return TRIGGER_FIELD_ITEM; }
bool eq(const Item *item) const override;
bool fix_fields(THD *, Item **) override;
void bind_fields() override;
bool check_column_privileges(uchar *arg) override;
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
table_map used_tables() const override { return INNER_TABLE_BIT; }
Field *get_tmp_table_field() override { return nullptr; }
Item *copy_or_same(THD *) override { return this; }
Item *get_tmp_table_item(THD *thd) override { return copy_or_same(thd); }
void cleanup() override;
void set_required_privilege(Access_bitmask privilege) override {
want_privilege = privilege;
}
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->err_code = func_arg->get_unnamed_function_error_code();
return true;
}
bool is_valid_for_pushdown(uchar *args [[maybe_unused]]) override {
return true;
}
private:
bool set_value(THD *thd, sp_rcontext *ctx, Item **it) override;
public:
Settable_routine_parameter *get_settable_routine_parameter() override {
return (read_only ? nullptr : this);
}
bool set_value(THD *thd, Item **it) {
const bool ret = set_value(thd, nullptr, it);
if (!ret)
bitmap_set_bit(triggers->get_subject_table()->fields_set_during_insert,
field_idx);
return ret;
}
private:
/*
'want_privilege' holds privileges required to perform operation on
this trigger field (SELECT_ACL if we are going to read it and
UPDATE_ACL if we are going to update it). It is initialized at
parse time but can be updated later if this trigger field is used
as OUT or INOUT parameter of stored routine (in this case
set_required_privilege() is called to appropriately update
want_privilege).
*/
Access_bitmask want_privilege;
GRANT_INFO *table_grants;
/*
Trigger field is read-only unless it belongs to the NEW row in a
BEFORE INSERT of BEFORE UPDATE trigger.
*/
bool read_only;
};
class Item_cache : public Item_basic_constant {
protected:
Item *example{nullptr};
table_map used_table_map{0};
/**
Field that this object will get value from. This is used by
index-based subquery engines to detect and remove the equality injected
by IN->EXISTS transformation.
*/
Item_field *cached_field{nullptr};
/*
true <=> cache holds value of the last stored item (i.e actual value).
store() stores item to be cached and sets this flag to false.
On the first call of val_xxx function if this flag is set to false the
cache_value() will be called to actually cache value of saved item.
cache_value() will set this flag to true.
*/
bool value_cached{false};
friend bool has_rollup_result(Item *item);
friend bool replace_contents_of_rollup_wrappers_with_tmp_fields(
THD *thd, Query_block *select, Item *item_arg);
public:
Item_cache() {
fixed = true;
set_nullable(true);
null_value = true;
}
Item_cache(enum_field_types field_type_arg) {
set_data_type(field_type_arg);
fixed = true;
set_nullable(true);
null_value = true;
}
void fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) override {
if (example == nullptr) return;
example->fix_after_pullout(parent_query_block, removed_query_block);
used_table_map = example->used_tables();
}
virtual bool allocate(uint) { return false; }
virtual bool setup(Item *item) {
example = item;
max_length = item->max_length;
decimals = item->decimals;
collation.set(item->collation);
unsigned_flag = item->unsigned_flag;
add_accum_properties(item);
if (item->type() == FIELD_ITEM) {
cached_field = down_cast<Item_field *>(item);
if (cached_field->m_table_ref != nullptr)
used_table_map = cached_field->m_table_ref->map();
} else {
used_table_map = item->used_tables();
}
return false;
}
enum Type type() const override { return CACHE_ITEM; }
static Item_cache *get_cache(const Item *item);
static Item_cache *get_cache(const Item *item, const Item_result type);
table_map used_tables() const override { return used_table_map; }
void print(const THD *thd, String *str,
enum_query_type query_type) const override;
bool eq_def(const Field *field) {
return cached_field != nullptr && cached_field->field->eq_def(field);
}
bool eq(const Item *item) const override { return this == item; }
/**
Check if saved item has a non-NULL value.
Will cache value of saved item if not already done.
@return true if cached value is non-NULL.
*/
bool has_value();
/**
If this item caches a field value, return pointer to underlying field.
@return Pointer to field, or NULL if this is not a cache for a field value.
*/
Field *field() { return cached_field->field; }
/**
Assigns to the cache the expression to be cached. Does not evaluate it.
@param item the expression to be cached
*/
virtual void store(Item *item);
/**
Force an item to be null. Used for empty subqueries to avoid attempts to
evaluate expressions which could have uninitialized columns due to
bypassing the subquery exec.
*/
void store_null() {
assert(is_nullable());
value_cached = true;
null_value = true;
}
virtual bool cache_value() = 0;
bool store_and_cache(Item *item) {
store(item);
return cache_value();
}
void cleanup() override;
bool basic_const_item() const override {
return (example != nullptr && example->basic_const_item());
}
bool walk(Item_processor processor, enum_walk walk, uchar *arg) override;
virtual void clear() {
null_value = true;
value_cached = false;
}
bool is_null() override {
return value_cached ? null_value : example->is_null();
}
bool is_non_const_over_literals(uchar *) override { return true; }
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->banned_function_name = "cached item";
// This should not happen as SELECT statements are not allowed.
assert(false);
return true;
}
Item_result result_type() const override {
if (!example) return INT_RESULT;
return Field::result_merge_type(example->data_type());
}
Item *get_example() const { return example; }
Item **get_example_ptr() { return &example; }
};
class Item_cache_int : public Item_cache {
protected:
longlong value;
public:
Item_cache_int() : Item_cache(MYSQL_TYPE_LONGLONG), value(0) {}
Item_cache_int(enum_field_types field_type_arg)
: Item_cache(field_type_arg), value(0) {}
/**
Unlike store(), this stores an explicitly provided value, not the one of
'item'; however, NULLness is still taken from 'item'.
*/
void store_value(Item *item, longlong val_arg);
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override { return val_int(); }
longlong val_date_temporal() override { return val_int(); }
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_int(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override { return get_time_from_int(ltime); }
Item_result result_type() const override { return INT_RESULT; }
bool cache_value() override;
};
/**
Cache class for BIT type expressions. The BIT data type behaves like unsigned
integer numbers in all situations, except when formatted as a string, where
it is directly interpreted as a byte string, possibly right-extended with
zero-bits.
*/
class Item_cache_bit final : public Item_cache_int {
public:
Item_cache_bit(enum_field_types field_type_arg)
: Item_cache_int(field_type_arg) {
assert(field_type_arg == MYSQL_TYPE_BIT);
}
/**
Transform the result Item_cache_int::value in bit format. The process is
similar to Field_bit_as_char::store().
*/
String *val_str(String *str) override;
uint string_length() { return ((max_length + 7) / 8); }
};
class Item_cache_real final : public Item_cache {
double value;
public:
Item_cache_real() : Item_cache(MYSQL_TYPE_DOUBLE), value(0) {}
double val_real() override;
longlong val_int() override;
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_real(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_real(ltime);
}
Item_result result_type() const override { return REAL_RESULT; }
bool cache_value() override;
void store_value(Item *expr, double value);
};
class Item_cache_decimal final : public Item_cache {
protected:
my_decimal decimal_value;
public:
Item_cache_decimal() : Item_cache(MYSQL_TYPE_NEWDECIMAL) {}
double val_real() override;
longlong val_int() override;
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_decimal(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_decimal(ltime);
}
Item_result result_type() const override { return DECIMAL_RESULT; }
bool cache_value() override;
void store_value(Item *expr, my_decimal *d);
};
class Item_cache_str final : public Item_cache {
char buffer[STRING_BUFFER_USUAL_SIZE];
String *value, value_buff;
bool is_varbinary;
protected:
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_cache_str(const Item *item)
: Item_cache(item->data_type()),
value(nullptr),
is_varbinary(item->type() == FIELD_ITEM &&
data_type() == MYSQL_TYPE_VARCHAR &&
!((const Item_field *)item)->field->has_charset()) {
collation.set(item->collation);
}
double val_real() override;
longlong val_int() override;
String *val_str(String *) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override {
return get_date_from_string(ltime, fuzzydate);
}
bool get_time(MYSQL_TIME *ltime) override {
return get_time_from_string(ltime);
}
Item_result result_type() const override { return STRING_RESULT; }
const CHARSET_INFO *charset() const { return value->charset(); }
bool cache_value() override;
void store_value(Item *expr, String &s);
};
class Item_cache_row final : public Item_cache {
Item_cache **values;
uint item_count;
public:
Item_cache_row() : Item_cache(), values(nullptr), item_count(2) {}
/**
'allocate' is only used in Item_cache_row::setup()
*/
bool allocate(uint num) override;
/*
'setup' is needed only by row => it not called by simple row subselect
(only by IN subselect (in subselect optimizer))
*/
bool setup(Item *item) override;
void store(Item *item) override;
void illegal_method_call(const char *) const MY_ATTRIBUTE((cold));
void make_field(Send_field *) override { illegal_method_call("make_field"); }
double val_real() override {
illegal_method_call("val_real");
return 0;
}
longlong val_int() override {
illegal_method_call("val_int");
return 0;
}
String *val_str(String *) override {
illegal_method_call("val_str");
return nullptr;
}
my_decimal *val_decimal(my_decimal *) override {
illegal_method_call("val_decimal");
return nullptr;
}
bool get_date(MYSQL_TIME *, my_time_flags_t) override {
illegal_method_call("get_date");
return true;
}
bool get_time(MYSQL_TIME *) override {
illegal_method_call("get_time");
return true;
}
Item_result result_type() const override { return ROW_RESULT; }
uint cols() const override { return item_count; }
Item *element_index(uint i) override { return values[i]; }
Item **addr(uint i) override { return (Item **)(values + i); }
bool check_cols(uint c) override;
bool null_inside() override;
void bring_value() override;
void cleanup() override { Item_cache::cleanup(); }
bool cache_value() override;
};
class Item_cache_datetime : public Item_cache {
String cached_string;
protected:
longlong int_value;
bool str_value_cached;
public:
Item_cache_datetime(enum_field_types field_type_arg)
: Item_cache(field_type_arg), int_value(0), str_value_cached(false) {
cmp_context = STRING_RESULT;
}
void store_value(Item *item, longlong val_arg);
void store(Item *item) override;
double val_real() override;
longlong val_int() override;
longlong val_time_temporal() override;
longlong val_date_temporal() override;
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
Item_result result_type() const override { return STRING_RESULT; }
/*
In order to avoid INT <-> STRING conversion of a DATETIME value
two cache_value functions are introduced. One (cache_value) caches STRING
value, another (cache_value_int) - INT value. Thus this cache item
completely relies on the ability of the underlying item to do the
correct conversion.
*/
bool cache_value_int();
bool cache_value() override;
void clear() override {
Item_cache::clear();
str_value_cached = false;
}
};
/// An item cache for values of type JSON.
class Item_cache_json : public Item_cache {
/// Cached value
Json_wrapper *m_value;
/// Whether the cached value is array and it is sorted
bool m_is_sorted;
public:
Item_cache_json();
~Item_cache_json() override;
bool cache_value() override;
void store_value(Item *expr, Json_wrapper *wr);
bool val_json(Json_wrapper *wr) override;
longlong val_int() override;
String *val_str(String *str) override;
Item_result result_type() const override { return STRING_RESULT; }
double val_real() override;
my_decimal *val_decimal(my_decimal *val) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
/// Sort cached data. Only arrays are affected.
void sort();
/// Returns true when cached value is array and it's sorted
bool is_sorted() { return m_is_sorted; }
};
/**
Interface for storing an aggregation of type and type specification of
multiple Item objects.
This is useful for cases where a field is an amalgamation of multiple types,
such as in UNION where type conversions must be done to a common denominator.
*/
class Item_aggregate_type : public Item {
protected:
/// Typelib information, only used for data type ENUM and SET.
TYPELIB *m_typelib{nullptr};
/// Geometry type, only used for data type GEOMETRY.
Field::geometry_type geometry_type;
void set_typelib(Item *item);
public:
Item_aggregate_type(THD *, Item *);
double val_real() override = 0;
longlong val_int() override = 0;
my_decimal *val_decimal(my_decimal *) override = 0;
String *val_str(String *) override = 0;
bool get_date(MYSQL_TIME *, my_time_flags_t) override = 0;
bool get_time(MYSQL_TIME *) override = 0;
Item_result result_type() const override;
bool unify_types(THD *, Item *);
Field *make_field_by_type(TABLE *table, bool strict);
static uint32 display_length(Item *item);
Field::geometry_type get_geometry_type() const override {
return geometry_type;
}
void make_field(Send_field *field) override {
Item::make_field(field);
// Item_type_holder is used for unions and effectively sends Fields
field->field = true;
}
bool check_function_as_value_generator(uchar *args) override {
Check_function_as_value_generator_parameters *func_arg =
pointer_cast<Check_function_as_value_generator_parameters *>(args);
func_arg->err_code = func_arg->get_unnamed_function_error_code();
return true;
}
};
/**
Item_type_holder stores an aggregation of name, type and type specification of
UNIONS and derived tables.
*/
class Item_type_holder final : public Item_aggregate_type {
typedef Item_aggregate_type super;
public:
/// @todo Consider giving Item_type_holder objects default names from the item
/// they are initialized by. This would ensure that
/// Query_expression::get_unit_column_types() always contains named items.
Item_type_holder(THD *thd, Item *item) : super(thd, item) {}
enum Type type() const override { return TYPE_HOLDER_ITEM; }
/**
Class is used in type aggregation only - this is needed to ensure
that it is not attempted to be evaluated as a const value.
*/
table_map used_tables() const override { return RAND_TABLE_BIT; }
double val_real() override;
longlong val_int() override;
my_decimal *val_decimal(my_decimal *) override;
String *val_str(String *) override;
bool get_date(MYSQL_TIME *, my_time_flags_t) override;
bool get_time(MYSQL_TIME *) override;
};
/**
Reference item that encapsulates both the type and the contained items of a
single column of a VALUES ROW query expression.
During execution, the item that will be output for the current iteration is
contained in m_value_ref. The type of the column and the referenced item may
differ in cases where a column of a VALUES clause contains different types
across different rows, and must therefore do type conversions to their common
denominator (e.g. a column containing both 10 and "10", of which the types
will be aggregated into VARCHAR).
See the class comment for TableValueConstructorIterator for info on how
Item_values_column is used as an indirection to iterate over the rows of a
table value constructor (i.e. VALUES ROW expressions).
*/
class Item_values_column final : public Item_aggregate_type {
typedef Item_aggregate_type super;
private:
Item *m_value_ref{nullptr};
/*
Even if a table value constructor contains only constant values, we
still need to identify individual rows within it. Set RAND_TABLE_BIT
to ensure that all rows are scanned, and that the whole VALUES clause
is never substituted with a const value or row.
*/
table_map m_aggregated_used_tables{RAND_TABLE_BIT};
type_conversion_status save_in_field_inner(Field *field,
bool no_conversions) override;
public:
Item_values_column(THD *thd, Item *ref);
bool eq(const Item *item) const override;
double val_real() override;
longlong val_int() override;
my_decimal *val_decimal(my_decimal *) override;
bool val_bool() override;
String *val_str(String *tmp) override;
bool val_json(Json_wrapper *result) override;
bool is_null() override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override;
bool get_time(MYSQL_TIME *ltime) override;
enum Type type() const override { return VALUES_COLUMN_ITEM; }
void set_value(Item *new_value) { m_value_ref = new_value; }
table_map used_tables() const override { return m_aggregated_used_tables; }
void add_used_tables(Item *value);
};
/// A class that represents a constant JSON value.
class Item_json final : public Item_basic_constant {
unique_ptr_destroy_only<Json_wrapper> m_value;
public:
Item_json(unique_ptr_destroy_only<Json_wrapper> value,
const Item_name_string &name);
~Item_json() override;
enum Type type() const override { return STRING_ITEM; }
void print(const THD *, String *str, enum_query_type) const override;
bool val_json(Json_wrapper *result) override;
Item_result result_type() const override { return STRING_RESULT; }
double val_real() override;
longlong val_int() override;
String *val_str(String *str) override;
my_decimal *val_decimal(my_decimal *buf) override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t) override;
bool get_time(MYSQL_TIME *ltime) override;
Item *clone_item() const override;
};
extern Cached_item *new_Cached_item(THD *thd, Item *item);
extern Item_result item_cmp_type(Item_result a, Item_result b);
extern bool resolve_const_item(THD *thd, Item **ref, Item *cmp_item);
extern int stored_field_cmp_to_item(THD *thd, Field *field, Item *item);
extern bool is_null_on_empty_table(THD *thd, Item_field *i);
extern const String my_null_string;
void convert_and_print(const String *from_str, String *to_str,
const CHARSET_INFO *to_cs);
std::string ItemToString(const Item *item, enum_query_type q_type);
std::string ItemToString(const Item *item);
std::string ItemToQuerySubstrNoCharLimit(const Item *item);
std::string ItemToQuerySubstr(
const Item *item, const LEX *lex = nullptr,
uint32 char_limit = ITEM_TO_QUERY_SUBSTRING_CHAR_LIMIT);
inline size_t CountVisibleFields(const mem_root_deque<Item *> &fields) {
return std::count_if(fields.begin(), fields.end(),
[](Item *item) { return !item->hidden; });
}
inline size_t CountHiddenFields(const mem_root_deque<Item *> &fields) {
return std::count_if(fields.begin(), fields.end(),
[](Item *item) { return item->hidden; });
}
inline Item *GetNthVisibleField(const mem_root_deque<Item *> &fields,
size_t index) {
for (Item *item : fields) {
if (item->hidden) continue;
if (index-- == 0) return item;
}
assert(false);
return nullptr;
}
/**
Returns true iff the two items are equal, as in a->eq(b),
after unwrapping refs and Item_cache objects.
*/
bool ItemsAreEqual(const Item *a, const Item *b);
/**
Returns true iff all items in the two arrays (which must be of the same size)
are equal, as in a->eq(b), after unwrapping refs and Item_cache objects.
*/
bool AllItemsAreEqual(const Item *const *a, const Item *const *b,
int num_items);
#endif /* ITEM_INCLUDED */