storage/innobase/buf/buf0buf.cc (4,447 lines of code) (raw):

/***************************************************************************** Copyright (c) 1995, 2025, Oracle and/or its affiliates. Copyright (c) 2008, Google Inc. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *****************************************************************************/ /** @file buf/buf0buf.cc The database buffer buf_pool Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "my_config.h" #include "btr0btr.h" #include "buf0buf.h" #include "fil0fil.h" #include "fsp0sysspace.h" #include "ha_prototypes.h" #include "mem0mem.h" #include "my_dbug.h" #include "page0size.h" #ifndef UNIV_HOTBACKUP #include "btr0sea.h" #include "buf0buddy.h" #include "buf0stats.h" #include "dict0stats_bg.h" #include "ibuf0ibuf.h" #include "lock0lock.h" #include "log0buf.h" #include "log0chkp.h" #include "page0page.h" #include "sync0rw.h" #include "trx0purge.h" #include "trx0undo.h" #include <errno.h> #include <stdarg.h> #include <sys/types.h> #include <time.h> #include <map> #include <new> #include <sstream> #include <string_view> #include <unordered_map> #include "buf0checksum.h" #include "buf0dump.h" #include "dict0dict.h" #include "log0recv.h" #include "os0thread-create.h" #include "page0zip.h" #include "srv0mon.h" #include "srv0srv.h" #include "srv0start.h" #include "sync0sync.h" #include "ut0new.h" #include "scope_guard.h" #endif /* !UNIV_HOTBACKUP */ #ifdef UNIV_DEBUG #include "ut0stateful_latching_rules.h" #endif /* UNIV_DEBUG */ #ifdef HAVE_LIBNUMA #include <numa.h> #include <numaif.h> struct set_numa_interleave_t { set_numa_interleave_t() { if (srv_numa_interleave) { ib::info(ER_IB_MSG_47) << "Setting NUMA memory policy to" " MPOL_INTERLEAVE"; struct bitmask *numa_nodes = numa_get_mems_allowed(); if (set_mempolicy(MPOL_INTERLEAVE, numa_nodes->maskp, numa_nodes->size) != 0) { ib::warn(ER_IB_MSG_48) << "Failed to set NUMA memory" " policy to MPOL_INTERLEAVE: " << strerror(errno); } numa_bitmask_free(numa_nodes); } } ~set_numa_interleave_t() { if (srv_numa_interleave) { ib::info(ER_IB_MSG_49) << "Setting NUMA memory policy to" " MPOL_DEFAULT"; if (set_mempolicy(MPOL_DEFAULT, nullptr, 0) != 0) { ib::warn(ER_IB_MSG_50) << "Failed to set NUMA memory" " policy to MPOL_DEFAULT: " << strerror(errno); } } } }; #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE set_numa_interleave_t scoped_numa #else #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE #endif /* HAVE_LIBNUMA */ /* IMPLEMENTATION OF THE BUFFER POOL ================================= Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains several mutexes which protect all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. buf_pool->chunks_mutex protects the chunks, n_chunks during resize; it also protects buf_pool_should_madvise: - readers of buf_pool_should_madvise hold any buf_pool's chunks_mutex - writers hold all buf_pools' chunk_mutex-es; it is useful to think that it also protects the status of madvice() flags set for chunks in this pool, even though these flags are handled by OS, as we only modify them why holding this latch; buf_pool->LRU_list_mutex protects the LRU_list; buf_pool->free_list_mutex protects the free_list and withdraw list; buf_pool->flush_state_mutex protects the flush state related data structures; buf_pool->zip_free mutex protects the zip_free arrays; buf_pool->zip_hash mutex protects the zip_hash hash and in_zip_hash flag. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list (buf_pool->free) contains blocks which are currently not used. The common LRU list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would normally be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the end of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The unzip_LRU list contains a subset of the common LRU list. The blocks on the unzip_LRU list hold a compressed file page and the corresponding uncompressed page frame. A block is in unzip_LRU if and only if the predicate buf_page_belongs_to_unzip_LRU(&block->page) holds. The blocks in unzip_LRU will be in same order as they are in the common LRU list. That is, each manipulation of the common LRU list will result in the same manipulation of the unzip_LRU list. The chain of modified blocks (buf_pool->flush_list) contains the blocks holding file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. The access to this list is protected by buf_pool->flush_list_mutex. The chain of unmodified compressed blocks (buf_pool->zip_clean) contains the control blocks (buf_page_t) of those compressed pages that are not in buf_pool->flush_list and for which no uncompressed page has been allocated in the buffer pool. The control blocks for uncompressed pages are accessible via buf_block_t objects that are reachable via buf_pool->chunks[]. The chains of free memory blocks (buf_pool->zip_free[]) are used by the buddy allocator (buf0buddy.cc) to keep track of currently unused memory blocks of size sizeof(buf_page_t)..UNIV_PAGE_SIZE / 2. These blocks are inside the UNIV_PAGE_SIZE-sized memory blocks of type BUF_BLOCK_MEMORY that the buddy allocator requests from the buffer pool. The buddy allocator is solely used for allocating control blocks for compressed pages (buf_page_t) and compressed page frames. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix field is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and resets the io_fix field when the io operation completes. A thread may request the above operation using the function buf_page_get(). It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. */ #ifndef UNIV_HOTBACKUP constexpr std::chrono::microseconds WAIT_FOR_READ{100}; constexpr std::chrono::microseconds WAIT_FOR_WRITE{100}; /** Number of attempts made to read in a page in the buffer pool */ static const ulint BUF_PAGE_READ_MAX_RETRIES = 100; /** Number of pages to read ahead */ static const ulint BUF_READ_AHEAD_PAGES = 64; /** The maximum portion of the buffer pool that can be used for the read-ahead buffer. (Divide buf_pool size by this amount) */ static const ulint BUF_READ_AHEAD_PORTION = 32; /** The buffer pools of the database */ buf_pool_t *buf_pool_ptr; /** true when resizing buffer pool is in the critical path. */ volatile bool buf_pool_resizing; /** Atomic variables to track resize status code and progress */ std::atomic_uint32_t buf_pool_resize_status_code = {0}; std::atomic_uint32_t buf_pool_resize_status_progress = {0}; /** Map of buffer pool chunks by its first frame address This is newly made by initialization of buffer pool and buf_resize_thread. Note: mutex protection is required when creating multiple buffer pools in parallel. We don't use a mutex during resize because that is still single threaded. */ typedef std::map<const byte *, buf_chunk_t *, std::less<const byte *>, ut::allocator<std::pair<const byte *const, buf_chunk_t *>>> buf_pool_chunk_map_t; static buf_pool_chunk_map_t *buf_chunk_map_reg; /** Container for how many pages from each index are contained in the buffer pool(s). */ buf_stat_per_index_t *buf_stat_per_index; /** Tracks adding dirty pages to the flush list. The life cycle of this object is constraint to the life of buffer pool*/ Buf_flush_list_added_lsns_aligned_ptr buf_flush_list_added; #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /** This is used to insert validation operations in execution in the debug version */ static ulint buf_dbg_counter = 0; #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /** This is used to enable multiple buffer pool instances with small buffer pool size. */ bool srv_buf_pool_debug; #endif /* UNIV_DEBUG */ namespace { #ifndef UNIV_HOTBACKUP const std::unordered_map<buf_io_fix, std::string_view> buf_io_fix_str{ {BUF_IO_NONE, "BUF_IO_NONE"}, {BUF_IO_READ, "BUF_IO_READ"}, {BUF_IO_WRITE, "BUF_IO_WRITE"}, {BUF_IO_PIN, "BUF_IO_PIN"}, }; const std::unordered_map<buf_flush_t, std::string_view> buf_flush_str{ {BUF_FLUSH_LRU, "BUF_FLUSH_LRU"}, {BUF_FLUSH_LIST, "BUF_FLUSH_LIST"}, {BUF_FLUSH_SINGLE_PAGE, "BUF_FLUSH_SINGLE_PAGE"}, {BUF_FLUSH_N_TYPES, "BUF_FLUSH_N_TYPES"}}; /** Helper iostream operator presenting the io_fix value as human-readable name of the enum. Used in error messages of Buf_io_fix_latching_rules. @param[in,out] outs the output stream to which to print @param[in] io_fix the value to be printed @return always equals the stream passed as the outs argument */ static std::ostream &operator<<(std::ostream &outs, const buf_io_fix io_fix) { ut_a(buf_page_t::is_correct_io_fix_value(io_fix)); return outs << buf_io_fix_str.at(io_fix); } /** Helper ostream operator to print buf_page_state in human-readable name of the enum. @param[in,out] outs the output stream @param[in] state the page state to be printed @return same output stream passed as input */ std::ostream &operator<<(std::ostream &outs, const buf_page_state &state) { const std::string_view state_str = buf_page_state_str.at(state); if (state_str.length() < 2) { /* Compression pages states: invalid for buffer block pages */ if (state == BUF_BLOCK_POOL_WATCH) { return outs << "POOL_WATCH"; } else if (state == BUF_BLOCK_ZIP_PAGE) { return outs << "ZIP_PAGE"; } else if (state == BUF_BLOCK_ZIP_DIRTY) { return outs << "ZIP_DIRTY"; } else { ut_error; } } return outs << state_str; } /** Helper ostream operator to print buf_flush_t in human-readable name of the enum. @param[in,out] outs the output stream @param[in] flush_type the flush_type to be printed @return same output stream passed as input */ std::ostream &operator<<(std::ostream &outs, const buf_flush_t &flush_type) { return outs << buf_flush_str.at(flush_type); } #endif /* !UNIV_HOTBACKUP */ } // namespace #if defined UNIV_PFS_MUTEX || defined UNIV_PFS_RWLOCK #ifndef PFS_SKIP_BUFFER_MUTEX_RWLOCK /* Buffer block mutexes and rwlocks can be registered in one group rather than individually. If PFS_GROUP_BUFFER_SYNC is defined, register buffer block mutex and rwlock in one group after their initialization. */ #define PFS_GROUP_BUFFER_SYNC /* This define caps the number of mutexes/rwlocks can be registered with performance schema. Developers can modify this define if necessary. Please note, this would be effective only if PFS_GROUP_BUFFER_SYNC is defined. */ #define PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER ULINT_MAX #endif /* !PFS_SKIP_BUFFER_MUTEX_RWLOCK */ #endif /* UNIV_PFS_MUTEX || UNIV_PFS_RWLOCK */ /** Macro to determine whether the read of write counter is used depending on the io_type */ #define MONITOR_RW_COUNTER(io_type, counter) \ ((io_type == BUF_IO_READ) ? (counter##_READ) : (counter##_WRITTEN)) /** Registers a chunk to buf_pool_chunk_map @param[in] chunk chunk of buffers */ static void buf_pool_register_chunk(buf_chunk_t *chunk) { buf_chunk_map_reg->insert( buf_pool_chunk_map_t::value_type(chunk->blocks->frame, chunk)); } lsn_t buf_pool_get_oldest_modification_approx(void) { lsn_t lsn = 0; lsn_t oldest_lsn = 0; /* When we traverse all the flush lists we don't care if previous flush lists changed. We do not require consistent result. */ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); buf_page_t *bpage; /* We don't let log-checkpoint halt because pages from system temporary are not yet flushed to the disk. Anyway, object residing in system temporary doesn't generate REDO logging. */ bpage = buf_pool->oldest_hp.get(); if (bpage != nullptr) { ut_ad(bpage->in_flush_list); } else { bpage = UT_LIST_GET_LAST(buf_pool->flush_list); } for (; bpage != nullptr && fsp_is_system_temporary(bpage->id.space()); bpage = UT_LIST_GET_PREV(list, bpage)) { /* Do nothing. */ } if (bpage != nullptr) { ut_ad(bpage->in_flush_list); lsn = bpage->get_oldest_lsn(); buf_pool->oldest_hp.set(bpage); } else { /* The last scanned page as entry point, or nullptr. */ buf_pool->oldest_hp.set(UT_LIST_GET_FIRST(buf_pool->flush_list)); } buf_flush_list_mutex_exit(buf_pool); if (!oldest_lsn || oldest_lsn > lsn) { oldest_lsn = lsn; } } /* The returned answer may be out of date: the flush_list can change after the mutex has been released. */ return (oldest_lsn); } lsn_t buf_pool_get_oldest_modification_lwm(void) { const lsn_t lsn = buf_pool_get_oldest_modification_approx(); if (lsn == 0) { return (0); } ut_a(lsn % OS_FILE_LOG_BLOCK_SIZE >= LOG_BLOCK_HDR_SIZE); const log_t &log = *log_sys; const lsn_t lag = buf_flush_list_added->order_lag(); ut_a(lag % OS_FILE_LOG_BLOCK_SIZE == 0); const lsn_t checkpoint_lsn = log_get_checkpoint_lsn(log); ut_a(checkpoint_lsn != 0); if (lsn > lag) { return (std::max(checkpoint_lsn, lsn - lag)); } else { return (checkpoint_lsn); } } void buf_get_total_list_len(ulint *LRU_len, ulint *free_len, ulint *flush_list_len) { *LRU_len = 0; *free_len = 0; *flush_list_len = 0; for (size_t i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool = buf_pool_from_array(i); *LRU_len += UT_LIST_GET_LEN(buf_pool->LRU); *free_len += UT_LIST_GET_LEN(buf_pool->free); *flush_list_len += UT_LIST_GET_LEN(buf_pool->flush_list); } } /** Get total list size in bytes from all buffer pools. */ void buf_get_total_list_size_in_bytes( buf_pools_list_size_t *buf_pools_list_size) /*!< out: list sizes in all buffer pools */ { ut_ad(buf_pools_list_size); memset(buf_pools_list_size, 0, sizeof(*buf_pools_list_size)); for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); /* We don't need mutex protection since this is for statistics purpose */ buf_pools_list_size->LRU_bytes += buf_pool->stat.LRU_bytes; buf_pools_list_size->unzip_LRU_bytes += UT_LIST_GET_LEN(buf_pool->unzip_LRU) * UNIV_PAGE_SIZE; buf_pools_list_size->flush_list_bytes += buf_pool->stat.flush_list_bytes; } } /** Get total buffer pool statistics. */ void buf_get_total_stat( buf_pool_stat_t *tot_stat) /*!< out: buffer pool stats */ { ulint i; tot_stat->reset(); for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool = buf_pool_from_array(i); buf_pool_stat_t *buf_stat = &buf_pool->stat; Counter::add(tot_stat->m_n_page_gets, buf_stat->m_n_page_gets); tot_stat->n_pages_read += buf_stat->n_pages_read; tot_stat->n_pages_written += buf_stat->n_pages_written; tot_stat->n_pages_created += buf_stat->n_pages_created; tot_stat->n_ra_pages_read_rnd += buf_stat->n_ra_pages_read_rnd; tot_stat->n_ra_pages_read += buf_stat->n_ra_pages_read; tot_stat->n_ra_pages_evicted += buf_stat->n_ra_pages_evicted; tot_stat->n_pages_made_young += buf_stat->n_pages_made_young; tot_stat->n_pages_not_made_young += buf_stat->n_pages_not_made_young; } } /** Allocates a buffer block. @return own: the allocated block, in state BUF_BLOCK_MEMORY */ buf_block_t *buf_block_alloc( buf_pool_t *buf_pool) /*!< in/out: buffer pool instance, or NULL for round-robin selection of the buffer pool */ { buf_block_t *block; ulint index; static ulint buf_pool_index; if (buf_pool == nullptr) { /* We are allocating memory from any buffer pool, ensure we spread the grace on all buffer pool instances. */ index = buf_pool_index++ % srv_buf_pool_instances; buf_pool = buf_pool_from_array(index); } block = buf_LRU_get_free_block(buf_pool); buf_block_set_state(block, BUF_BLOCK_MEMORY); return (block); } #endif /* !UNIV_HOTBACKUP */ /** Prints a page to stderr. @param[in] read_buf a database page @param[in] page_size page size @param[in] flags 0 or BUF_PAGE_PRINT_NO_CRASH or BUF_PAGE_PRINT_NO_FULL */ void buf_page_print(const byte *read_buf, const page_size_t &page_size, ulint flags) { if (!(flags & BUF_PAGE_PRINT_NO_FULL)) { ib::info(ER_IB_MSG_51) << "Page dump in ascii and hex (" << page_size.physical() << " bytes):"; ut_print_buf(stderr, read_buf, page_size.physical()); fputs("\nInnoDB: End of page dump\n", stderr); } if (page_size.is_compressed()) { BlockReporter compressed = BlockReporter(false, read_buf, page_size, false); /* Print compressed page. */ ib::info(ER_IB_MSG_52) << "Compressed page type (" << fil_page_get_type(read_buf) << "); stored checksum in field1 " << mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM) << "; calculated checksums for field1: " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_CRC32) << " " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_CRC32) << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_INNODB) << " " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_INNODB) << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_NONE) << " " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_NONE) << "; page LSN " << mach_read_from_8(read_buf + FIL_PAGE_LSN) << "; page number (if stored to page" << " already) " << mach_read_from_4(read_buf + FIL_PAGE_OFFSET) << "; space id (if stored to page already) " << mach_read_from_4(read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); } else { const uint32_t crc32 = buf_calc_page_crc32(read_buf); const uint32_t crc32_legacy = buf_calc_page_crc32(read_buf, true); ib::info(ER_IB_MSG_53) << "Uncompressed page, stored checksum in field1 " << mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM) << ", calculated checksums for field1: " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_CRC32) << " " << crc32 << "/" << crc32_legacy << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_INNODB) << " " << buf_calc_page_new_checksum(read_buf) << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_NONE) << " " << BUF_NO_CHECKSUM_MAGIC << ", stored checksum in field2 " << mach_read_from_4(read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM) << ", calculated checksums for field2: " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_CRC32) << " " << crc32 << "/" << crc32_legacy << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_INNODB) << " " << buf_calc_page_old_checksum(read_buf) << ", " << buf_checksum_algorithm_name(SRV_CHECKSUM_ALGORITHM_NONE) << " " << BUF_NO_CHECKSUM_MAGIC << ", page LSN " << mach_read_from_4(read_buf + FIL_PAGE_LSN) << " " << mach_read_from_4(read_buf + FIL_PAGE_LSN + 4) << ", low 4 bytes of LSN at page end " << mach_read_from_4(read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM + 4) << ", page number (if stored to page already) " << mach_read_from_4(read_buf + FIL_PAGE_OFFSET) << ", space id (if created with >= MySQL-4.1.1" " and stored already) " << mach_read_from_4(read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); } #ifndef UNIV_HOTBACKUP if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT) { fprintf(stderr, "InnoDB: Page may be an insert undo log page\n"); } else if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_UPDATE) { fprintf(stderr, "InnoDB: Page may be an update undo log page\n"); } #endif /* !UNIV_HOTBACKUP */ switch (fil_page_get_type(read_buf)) { space_index_t index_id; case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: index_id = btr_page_get_index_id(read_buf); fprintf(stderr, "InnoDB: Page may be an index page where" " index id is " IB_ID_FMT "\n", index_id); break; case FIL_PAGE_INODE: fputs("InnoDB: Page may be an 'inode' page\n", stderr); break; case FIL_PAGE_IBUF_FREE_LIST: fputs("InnoDB: Page may be an insert buffer free list page\n", stderr); break; case FIL_PAGE_TYPE_ALLOCATED: fputs("InnoDB: Page may be a freshly allocated page\n", stderr); break; case FIL_PAGE_IBUF_BITMAP: fputs("InnoDB: Page may be an insert buffer bitmap page\n", stderr); break; case FIL_PAGE_TYPE_SYS: fputs("InnoDB: Page may be a system page\n", stderr); break; case FIL_PAGE_TYPE_TRX_SYS: fputs("InnoDB: Page may be a transaction system page\n", stderr); break; case FIL_PAGE_TYPE_FSP_HDR: fputs("InnoDB: Page may be a file space header page\n", stderr); break; case FIL_PAGE_TYPE_XDES: fputs("InnoDB: Page may be an extent descriptor page\n", stderr); break; case FIL_PAGE_TYPE_BLOB: fputs("InnoDB: Page may be a BLOB page\n", stderr); break; case FIL_PAGE_SDI_BLOB: fputs("InnoDB: Page may be a SDI BLOB page\n", stderr); break; case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: fputs("InnoDB: Page may be a compressed BLOB page\n", stderr); break; case FIL_PAGE_SDI_ZBLOB: fputs("InnoDB: Page may be a compressed SDI BLOB page\n", stderr); break; case FIL_PAGE_TYPE_RSEG_ARRAY: fputs("InnoDB: Page may be a Rollback Segment Array page\n", stderr); break; } ut_ad(flags & BUF_PAGE_PRINT_NO_CRASH); } #ifndef UNIV_HOTBACKUP #ifdef PFS_GROUP_BUFFER_SYNC #ifndef PFS_SKIP_BUFFER_MUTEX_RWLOCK extern mysql_pfs_key_t buffer_block_mutex_key; #endif /* !PFS_SKIP_BUFFER_MUTEX_RWLOCK */ /** This function registers mutexes and rwlocks in buffer blocks with performance schema. If PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER is defined to be a value less than chunk->size, then only mutexes and rwlocks in the first PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER blocks are registered. */ static void pfs_register_buffer_block( buf_chunk_t *chunk) /*!< in/out: chunk of buffers */ { buf_block_t *block; ulint num_to_register; block = chunk->blocks; num_to_register = std::min(chunk->size, PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER); for (ulint i = 0; i < num_to_register; i++) { #ifdef UNIV_PFS_MUTEX BPageMutex *mutex; mutex = &block->mutex; #ifndef PFS_SKIP_BUFFER_MUTEX_RWLOCK mutex->pfs_add(buffer_block_mutex_key); #endif /* !PFS_SKIP_BUFFER_MUTEX_RWLOCK */ #endif /* UNIV_PFS_MUTEX */ rw_lock_t *rwlock; #ifdef UNIV_PFS_RWLOCK rwlock = &block->lock; ut_a(!rwlock->pfs_psi); #ifndef PFS_SKIP_BUFFER_MUTEX_RWLOCK rwlock->pfs_psi = (PSI_server) ? PSI_server->init_rwlock(buf_block_lock_key, rwlock) : NULL; #else rwlock->pfs_psi = (PSI_server) ? PSI_server->init_rwlock(PFS_NOT_INSTRUMENTED, rwlock) : NULL; #endif /* !PFS_SKIP_BUFFER_MUTEX_RWLOCK */ #ifdef UNIV_DEBUG rwlock = &block->debug_latch; ut_a(!rwlock->pfs_psi); rwlock->pfs_psi = (PSI_server) ? PSI_server->init_rwlock( buf_block_debug_latch_key, rwlock) : NULL; #endif /* UNIV_DEBUG */ #endif /* UNIV_PFS_RWLOCK */ block++; } } #endif /* PFS_GROUP_BUFFER_SYNC */ /** Initializes a buffer control block when the buf_pool is created. */ static void buf_block_init( buf_pool_t *buf_pool, /*!< in: buffer pool instance */ buf_block_t *block, /*!< in: pointer to control block */ byte *frame) /*!< in: pointer to buffer frame */ { UNIV_MEM_DESC(frame, UNIV_PAGE_SIZE); /* This function should only be executed at database startup or by buf_pool_resize(). Either way, adaptive hash index must not exist. */ block->ahi.assert_empty_on_init(); block->frame = frame; block->page.buf_pool_index = buf_pool_index(buf_pool); block->page.state = BUF_BLOCK_NOT_USED; block->page.buf_fix_count.store(0); block->page.init_io_fix(); block->page.reset_flush_observer(); block->page.m_space = nullptr; block->page.m_version = 0; block->modify_clock = 0; ut_d(block->page.file_page_was_freed = false); block->ahi.index = nullptr; block->made_dirty_with_no_latch = false; ut_d(block->page.in_page_hash = false); ut_d(block->page.in_zip_hash = false); ut_d(block->page.in_flush_list = false); ut_d(block->page.in_free_list = false); ut_d(block->page.in_LRU_list = false); ut_d(block->in_unzip_LRU_list = false); ut_d(block->in_withdraw_list = false); page_zip_des_init(&block->page.zip); mutex_create(LATCH_ID_BUF_BLOCK_MUTEX, &block->mutex); #if defined PFS_SKIP_BUFFER_MUTEX_RWLOCK || defined PFS_GROUP_BUFFER_SYNC /* If PFS_SKIP_BUFFER_MUTEX_RWLOCK is defined, skip registration of buffer block rwlock with performance schema. If PFS_GROUP_BUFFER_SYNC is defined, skip the registration since buffer block rwlock will be registered later in pfs_register_buffer_block(). */ rw_lock_create(PFS_NOT_INSTRUMENTED, &block->lock, LATCH_ID_BUF_BLOCK_LOCK); ut_d(rw_lock_create(PFS_NOT_INSTRUMENTED, &block->debug_latch, LATCH_ID_BUF_BLOCK_DEBUG)); #else /* PFS_SKIP_BUFFER_MUTEX_RWLOCK || PFS_GROUP_BUFFER_SYNC */ rw_lock_create(buf_block_lock_key, &block->lock, LATCH_ID_BUF_BLOCK_LOCK); ut_d(rw_lock_create(buf_block_debug_latch_key, &block->debug_latch, LATCH_ID_BUF_BLOCK_DEBUG)); #endif /* PFS_SKIP_BUFFER_MUTEX_RWLOCK || PFS_GROUP_BUFFER_SYNC */ block->lock.is_block_lock = true; ut_ad(rw_lock_validate(&(block->lock))); } /* We maintain our private view of innobase_should_madvise_buf_pool() which we initialize at the beginning of buf_pool_init() and then update when the @@global.innodb_buffer_pool_in_core_file changes. Changes to buf_pool_should_madvise are protected by holding chunk_mutex for all buf_pool_t instances. This way, even if @@global.innodb_buffer_pool_in_core_file changes during execution of buf_pool_init() (unlikely) or during buf_pool_resize(), we will use a single consistent value for all (de)allocated chunks. The function buf_pool_update_madvise() handles updating buf_pool_should_madvise in reaction to changes to @@global.innodb_buffer_pool_in_core_file and makes sure before releasing chunk_mutex-es that all chunks are properly madvised according to new value. It is important that initial value of this variable is `false` and not `true`, as on some platforms which do not support madvise() or MADV_DONT_DUMP we need to avoid taking any actions which might trigger a warning or disabling @@core_file. */ static bool buf_pool_should_madvise = false; // Doxygen gets confused by buf_chunk_t somehow. //! @cond /* Implementation of buf_chunk_t's methods */ /** Advices the OS that this chunk should be dumped to a core file. Emits a warning to the log if could not succeed. @return true iff succeeded, false if no OS support or failed */ bool buf_chunk_t::madvise_dump() { #ifdef HAVE_MADV_DONTDUMP const auto low_level_info = ut::large_page_low_level_info(this->mem, ut::fallback_to_normal_page_t{}); if (madvise(low_level_info.base_ptr, low_level_info.allocation_size, MADV_DODUMP)) { ib::warn(ER_IB_MSG_MADVISE_FAILED, low_level_info.base_ptr, low_level_info.allocation_size, "MADV_DODUMP", strerror(errno)); return false; } return true; #else /* HAVE_MADV_DONTDUMP */ ib::warn(ER_IB_MSG_MADV_DONTDUMP_UNSUPPORTED); return false; #endif /* HAVE_MADV_DONTDUMP */ } /** Advices the OS that this chunk should not be dumped to a core file. Emits a warning to the log if could not succeed. @return true iff succeeded, false if no OS support or failed */ bool buf_chunk_t::madvise_dont_dump() { #ifdef HAVE_MADV_DONTDUMP const auto low_level_info = ut::large_page_low_level_info(this->mem, ut::fallback_to_normal_page_t{}); if (madvise(low_level_info.base_ptr, low_level_info.allocation_size, MADV_DONTDUMP)) { ib::warn(ER_IB_MSG_MADVISE_FAILED, low_level_info.base_ptr, low_level_info.allocation_size, "MADV_DONTDUMP", strerror(errno)); return false; } return true; #else /* HAVE_MADV_DONTDUMP */ ib::warn(ER_IB_MSG_MADV_DONTDUMP_UNSUPPORTED); return false; #endif /* HAVE_MADV_DONTDUMP */ } /* End of implementation of buf_chunk_t's methods */ //! @endcond /* Implementation of buf_pool_t's methods */ bool buf_pool_t::allocate_chunk(ulonglong mem_size, buf_chunk_t *chunk) { ut_ad(mutex_own(&chunks_mutex)); chunk->mem = static_cast<uint8_t *>(ut::malloc_large_page_withkey( ut::make_psi_memory_key(mem_key_buf_buf_pool), mem_size, ut::fallback_to_normal_page_t{})); if (chunk->mem == nullptr) { return false; } /* Dump core without large memory buffers */ if (buf_pool_should_madvise) { if (!chunk->madvise_dont_dump()) { innobase_disable_core_dump(); } } #ifdef HAVE_LIBNUMA if (srv_numa_interleave) { const auto low_level_info = ut::large_page_low_level_info( chunk->mem, ut::fallback_to_normal_page_t{}); struct bitmask *numa_nodes = numa_get_mems_allowed(); int st = mbind(low_level_info.base_ptr, low_level_info.allocation_size, MPOL_INTERLEAVE, numa_nodes->maskp, numa_nodes->size, MPOL_MF_MOVE); if (st != 0) { ib::warn(ER_IB_MSG_54, low_level_info.base_ptr, low_level_info.allocation_size, "MPOL_INTERLEAVE", "MPOL_MF_MOVE", strerror(errno)); } numa_bitmask_free(numa_nodes); } #endif /* HAVE_LIBNUMA */ return true; } void buf_pool_t::deallocate_chunk(buf_chunk_t *chunk) { ut_ad(mutex_own(&chunks_mutex)); /* Undo the effect of the earlier MADV_DONTDUMP */ if (buf_pool_should_madvise) { if (!chunk->madvise_dump()) { innobase_disable_core_dump(); } } ut::free_large_page(chunk->mem, ut::fallback_to_normal_page_t{}); } bool buf_pool_t::madvise_dump() { ut_ad(mutex_own(&chunks_mutex)); for (buf_chunk_t *chunk = chunks; chunk < chunks + n_chunks; chunk++) { if (!chunk->madvise_dump()) { return false; } } return true; } bool buf_pool_t::madvise_dont_dump() { ut_ad(mutex_own(&chunks_mutex)); for (buf_chunk_t *chunk = chunks; chunk < chunks + n_chunks; chunk++) { if (!chunk->madvise_dont_dump()) { return false; } } return true; } /* End of implementation of buf_pool_t's methods */ /** Checks if innobase_should_madvise_buf_pool() value has changed since we've last check and if so, then updates buf_pool_should_madvise and calls madvise for all chunks in all srv_buf_pool_instances. @see buf_pool_should_madvise comment for a longer explanation. */ void buf_pool_update_madvise() { /* We need to make sure that buf_pool_should_madvise value change does not occur in parallel with allocation or deallocation of chunks in some buf_pool as this could lead to inconsistency - we would call madvise for some but not all chunks, perhaps with a wrong MADV_DO(NT)_DUMP flag. Moreover, we are about to iterate over chunks, which requires the bounds of for loop to be fixed. To solve both problems we first latch all buf_pool_t::chunks_mutex-es, and only then update the buf_pool_should_madvise, and perform iteration over buf_pool-s and their chunks.*/ for (ulint i = 0; i < srv_buf_pool_instances; i++) { mutex_enter(&buf_pool_from_array(i)->chunks_mutex); } auto should_madvise = innobase_should_madvise_buf_pool(); /* This `if` is here not for performance, but for correctness: on platforms which do not support madvise MADV_DONT_DUMP we prefer to not call madvice to avoid warnings and disabling @@global.core_file in cases where the user did not really intend to change anything */ if (should_madvise != buf_pool_should_madvise) { buf_pool_should_madvise = should_madvise; for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool = buf_pool_from_array(i); bool success = buf_pool_should_madvise ? buf_pool->madvise_dont_dump() : buf_pool->madvise_dump(); if (!success) { innobase_disable_core_dump(); break; } } } for (ulint i = 0; i < srv_buf_pool_instances; i++) { mutex_exit(&buf_pool_from_array(i)->chunks_mutex); } } /** Allocates a chunk of buffer frames. If called for an existing buf_pool, its free_list_mutex must be locked. @return chunk, or NULL on failure */ static buf_chunk_t *buf_chunk_init( buf_pool_t *buf_pool, /*!< in: buffer pool instance */ buf_chunk_t *chunk, /*!< out: chunk of buffers */ ulonglong mem_size, /*!< in: requested size in bytes */ std::mutex *mutex) /*!< in,out: Mutex protecting chunk map. */ { buf_block_t *block; byte *frame; ulint i; mutex_own(&buf_pool->chunks_mutex); /* Round down to a multiple of page size, although it already should be. */ mem_size = ut_2pow_round(mem_size, UNIV_PAGE_SIZE); /* Reserve space for the block descriptors. */ mem_size += ut_2pow_round( (mem_size / UNIV_PAGE_SIZE) * (sizeof *block) + (UNIV_PAGE_SIZE - 1), UNIV_PAGE_SIZE); DBUG_EXECUTE_IF("ib_buf_chunk_init_fails", return (nullptr);); if (!buf_pool->allocate_chunk(mem_size, chunk)) { return (nullptr); } /* Allocate the block descriptors from the start of the memory block. */ chunk->blocks = (buf_block_t *)chunk->mem; /* Align a pointer to the first frame. Note that when os_large_page_size is smaller than UNIV_PAGE_SIZE, we may allocate one fewer block than requested. When it is bigger, we may allocate more blocks than requested. */ frame = (byte *)ut_align(chunk->mem, UNIV_PAGE_SIZE); chunk->size = ut::large_page_allocation_size( chunk->mem, ut::fallback_to_normal_page_t{}) / UNIV_PAGE_SIZE - (frame != chunk->mem); /* Subtract the space needed for block descriptors. */ { ulint size = chunk->size; while (frame < (byte *)(chunk->blocks + size)) { frame += UNIV_PAGE_SIZE; size--; } chunk->size = size; } /* Init block structs and assign frames for them. Then we assign the frames to the first blocks (we already mapped the memory above). */ block = chunk->blocks; for (i = chunk->size; i--;) { buf_block_init(buf_pool, block, frame); UNIV_MEM_INVALID(block->frame, UNIV_PAGE_SIZE); /* Add the block to the free list */ UT_LIST_ADD_LAST(buf_pool->free, &block->page); ut_d(block->page.in_free_list = true); ut_ad(!block->page.someone_has_io_responsibility()); ut_ad(buf_pool_from_block(block) == buf_pool); block++; frame += UNIV_PAGE_SIZE; } if (mutex != nullptr) { mutex->lock(); } buf_pool_register_chunk(chunk); if (mutex != nullptr) { mutex->unlock(); } #ifdef PFS_GROUP_BUFFER_SYNC pfs_register_buffer_block(chunk); #endif /* PFS_GROUP_BUFFER_SYNC */ return (chunk); } #ifdef UNIV_DEBUG /** Finds a block in the given buffer chunk that points to a given compressed page. @return buffer block pointing to the compressed page, or NULL */ static buf_block_t *buf_chunk_contains_zip( buf_chunk_t *chunk, /*!< in: chunk being checked */ const void *data) /*!< in: pointer to compressed page */ { buf_block_t *block; ulint i; block = chunk->blocks; for (i = chunk->size; i--; block++) { if (block->page.zip.data == data) { return (block); } } return (nullptr); } /** Finds a block in the buffer pool that points to a given compressed page. Used only to confirm that buffer pool does not contain a given pointer, thus protected by zip_free_mutex. @param[in] buf_pool buffer pool instance @param[in] data pointer to compressed page @return buffer block pointing to the compressed page, or NULL */ buf_block_t *buf_pool_contains_zip(buf_pool_t *buf_pool, const void *data) { ulint n; buf_chunk_t *chunk = buf_pool->chunks; ut_ad(buf_pool); ut_ad(mutex_own(&buf_pool->zip_free_mutex)); for (n = buf_pool->n_chunks; n--; chunk++) { buf_block_t *block = buf_chunk_contains_zip(chunk, data); if (block) { return (block); } } return (nullptr); } #endif /* UNIV_DEBUG */ /** Checks that all file pages in the buffer chunk are in a replaceable state. @param[in] chunk The chunk to be checked */ static void buf_assert_all_are_replaceable(buf_chunk_t *chunk) { buf_block_t *block = chunk->blocks; for (auto i = chunk->size; i--; block++) { switch (buf_block_get_state(block)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* The uncompressed buffer pool should never contain compressed block descriptors. */ ut_error; break; case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* Skip blocks that are not being used for file pages. */ break; case BUF_BLOCK_FILE_PAGE: buf_page_mutex_enter(block); const auto &bpage = block->page; if (!buf_flush_ready_for_replace(&bpage) || DBUG_EVALUATE_IF("simulate_dirty_page_at_shutdown", true, false)) { ib::fatal(UT_LOCATION_HERE, ER_IB_ERR_PAGE_DIRTY_AT_SHUTDOWN) << *block; } buf_page_mutex_exit(block); break; } } } /** Set buffer pool size variables Note: It's safe without mutex protection because of startup only. */ static void buf_pool_set_sizes(void) { ulint i; ulint curr_size = 0; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); curr_size += buf_pool->curr_pool_size; } if (srv_buf_pool_curr_size == 0) { srv_buf_pool_curr_size = curr_size; } else { srv_buf_pool_curr_size = srv_buf_pool_size; } srv_buf_pool_old_size = srv_buf_pool_size; srv_buf_pool_base_size = srv_buf_pool_size; os_wmb; } /** Initialize a buffer pool instance. @param[in] buf_pool buffer pool instance @param[in] buf_pool_size size in bytes @param[in] instance_no id of the instance @param[in,out] mutex Mutex to protect common data structures @param[out] err DB_SUCCESS if all goes well */ static void buf_pool_create(buf_pool_t *buf_pool, ulint buf_pool_size, ulint instance_no, std::mutex *mutex, dberr_t &err) { ulint i; ulint chunk_size; buf_chunk_t *chunk; #ifdef UNIV_LINUX cpu_set_t cpuset; CPU_ZERO(&cpuset); const long n_cores = sysconf(_SC_NPROCESSORS_ONLN); CPU_SET(instance_no % n_cores, &cpuset); buf_pool->stat.reset(); if (pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset) == -1) { ib::error(ER_IB_ERR_SCHED_SETAFFNINITY_FAILED) << "sched_setaffinity() failed!"; } /* Linux might be able to set different setting for each thread worth to try to set high priority for this thread. */ setpriority(PRIO_PROCESS, (pid_t)syscall(SYS_gettid), -20); #endif /* UNIV_LINUX */ ut_ad(buf_pool_size % srv_buf_pool_chunk_unit == 0); /* 1. Initialize general fields ------------------------------- */ mutex_create(LATCH_ID_BUF_POOL_CHUNKS, &buf_pool->chunks_mutex); mutex_create(LATCH_ID_BUF_POOL_LRU_LIST, &buf_pool->LRU_list_mutex); mutex_create(LATCH_ID_BUF_POOL_FREE_LIST, &buf_pool->free_list_mutex); mutex_create(LATCH_ID_BUF_POOL_ZIP_FREE, &buf_pool->zip_free_mutex); mutex_create(LATCH_ID_BUF_POOL_ZIP_HASH, &buf_pool->zip_hash_mutex); mutex_create(LATCH_ID_BUF_POOL_ZIP, &buf_pool->zip_mutex); mutex_create(LATCH_ID_BUF_POOL_FLUSH_STATE, &buf_pool->flush_state_mutex); if (buf_pool_size > 0) { mutex_enter(&buf_pool->chunks_mutex); buf_pool->n_chunks = buf_pool_size / srv_buf_pool_chunk_unit; chunk_size = srv_buf_pool_chunk_unit; buf_pool->chunks = reinterpret_cast<buf_chunk_t *>(ut::zalloc_withkey( UT_NEW_THIS_FILE_PSI_KEY, buf_pool->n_chunks * sizeof(*chunk))); buf_pool->chunks_old = nullptr; UT_LIST_INIT(buf_pool->LRU); UT_LIST_INIT(buf_pool->free); UT_LIST_INIT(buf_pool->withdraw); buf_pool->withdraw_target = 0; UT_LIST_INIT(buf_pool->flush_list); UT_LIST_INIT(buf_pool->unzip_LRU); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG UT_LIST_INIT(buf_pool->zip_clean); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ for (i = 0; i < UT_ARR_SIZE(buf_pool->zip_free); ++i) { UT_LIST_INIT(buf_pool->zip_free[i]); } buf_pool->curr_size = 0; chunk = buf_pool->chunks; do { if (!buf_chunk_init(buf_pool, chunk, chunk_size, mutex)) { while (--chunk >= buf_pool->chunks) { buf_block_t *block = chunk->blocks; for (i = chunk->size; i--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free(&block->debug_latch)); } buf_pool->deallocate_chunk(chunk); } ut::free(buf_pool->chunks); buf_pool->chunks = nullptr; err = DB_ERROR; mutex_exit(&buf_pool->chunks_mutex); return; } buf_pool->curr_size += chunk->size; } while (++chunk < buf_pool->chunks + buf_pool->n_chunks); mutex_exit(&buf_pool->chunks_mutex); buf_pool->instance_no = instance_no; buf_pool->read_ahead_area = static_cast<page_no_t>( std::min(BUF_READ_AHEAD_PAGES, ut_2_power_up(buf_pool->curr_size / BUF_READ_AHEAD_PORTION))); buf_pool->curr_pool_size = buf_pool->curr_size * UNIV_PAGE_SIZE; buf_pool->old_size = buf_pool->curr_size; buf_pool->n_chunks_new = buf_pool->n_chunks; /* Number of locks protecting page_hash must be a power of two */ srv_n_page_hash_locks = static_cast<ulong>(ut_2_power_up(srv_n_page_hash_locks)); ut_a(srv_n_page_hash_locks != 0); ut_a(srv_n_page_hash_locks <= MAX_PAGE_HASH_LOCKS); buf_pool->page_hash = ib_create(2 * buf_pool->curr_size, LATCH_ID_HASH_TABLE_RW_LOCK, srv_n_page_hash_locks, MEM_HEAP_FOR_PAGE_HASH); buf_pool->zip_hash = ut::new_<hash_table_t>(2 * buf_pool->curr_size); buf_pool->last_printout_time = std::chrono::steady_clock::now(); } /* 2. Initialize flushing fields -------------------------------- */ mutex_create(LATCH_ID_FLUSH_LIST, &buf_pool->flush_list_mutex); for (i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { buf_pool->no_flush[i] = os_event_create(); /* There are no flushes at this moment */ os_event_set(buf_pool->no_flush[i]); } buf_pool->watch = (buf_page_t *)ut::zalloc_withkey( UT_NEW_THIS_FILE_PSI_KEY, sizeof(*buf_pool->watch) * BUF_POOL_WATCH_SIZE); for (i = 0; i < BUF_POOL_WATCH_SIZE; i++) { buf_pool->watch[i].buf_pool_index = buf_pool->instance_no; } /* All fields are initialized by ut::zalloc_withkey(UT_NEW_THIS_FILE_PSI_KEY). */ buf_pool->try_LRU_scan = true; /* Dirty Page Tracking is disabled by default. */ buf_pool->track_page_lsn = LSN_MAX; buf_pool->max_lsn_io = 0; /* Initialize the hazard pointer for flush_list batches */ new (&buf_pool->flush_hp) FlushHp(buf_pool, &buf_pool->flush_list_mutex); /* Initialize the hazard pointer for the oldest page scan */ new (&buf_pool->oldest_hp) FlushHp(buf_pool, &buf_pool->flush_list_mutex); /* Initialize the hazard pointer for LRU batches */ new (&buf_pool->lru_hp) LRUHp(buf_pool, &buf_pool->LRU_list_mutex); /* Initialize the iterator for LRU scan search */ new (&buf_pool->lru_scan_itr) LRUItr(buf_pool, &buf_pool->LRU_list_mutex); /* Initialize the iterator for single page scan search */ new (&buf_pool->single_scan_itr) LRUItr(buf_pool, &buf_pool->LRU_list_mutex); err = DB_SUCCESS; } void buf_page_free_descriptor(buf_page_t *bpage) { bpage->reset_page_id(); ut::free(bpage); } /** Free one buffer pool instance @param[in] buf_pool buffer pool instance to free */ static void buf_pool_free_instance(buf_pool_t *buf_pool) { buf_chunk_t *chunk; buf_chunk_t *chunks; buf_page_t *bpage; buf_page_t *prev_bpage = nullptr; mutex_free(&buf_pool->LRU_list_mutex); mutex_free(&buf_pool->free_list_mutex); mutex_free(&buf_pool->zip_free_mutex); mutex_free(&buf_pool->zip_hash_mutex); mutex_free(&buf_pool->flush_state_mutex); mutex_free(&buf_pool->zip_mutex); mutex_free(&buf_pool->flush_list_mutex); for (bpage = UT_LIST_GET_LAST(buf_pool->LRU); bpage != nullptr; bpage = prev_bpage) { prev_bpage = UT_LIST_GET_PREV(LRU, bpage); buf_page_state state = buf_page_get_state(bpage); ut_ad(buf_page_in_file(bpage)); ut_ad(bpage->in_LRU_list); if (state != BUF_BLOCK_FILE_PAGE) { /* We must not have any dirty block except when doing a fast shutdown. */ ut_ad(state == BUF_BLOCK_ZIP_PAGE || srv_fast_shutdown == 2); buf_page_free_descriptor(bpage); } } ut::free(buf_pool->watch); buf_pool->watch = nullptr; mutex_enter(&buf_pool->chunks_mutex); chunks = buf_pool->chunks; chunk = chunks + buf_pool->n_chunks; while (--chunk >= chunks) { buf_block_t *block = chunk->blocks; for (ulint i = chunk->size; i--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free(&block->debug_latch)); } buf_pool->deallocate_chunk(chunk); } for (ulint i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; ++i) { os_event_destroy(buf_pool->no_flush[i]); } ut::free(buf_pool->chunks); mutex_exit(&buf_pool->chunks_mutex); mutex_free(&buf_pool->chunks_mutex); ha_clear(buf_pool->page_hash); ut::delete_(buf_pool->page_hash); ut::delete_(buf_pool->zip_hash); } /** Frees the buffer pool global data structures. */ static void buf_pool_free() { btr_search_sys_free(); ut::delete_(buf_stat_per_index); ut::delete_(buf_chunk_map_reg); buf_chunk_map_reg = nullptr; ut::free(buf_pool_ptr); buf_pool_ptr = nullptr; buf_flush_list_added.reset(nullptr); } /** Creates the buffer pool. @param[in] total_size Size of the total pool in bytes. @param[in] n_instances Number of buffer pool instances to create. @return DB_SUCCESS if success, DB_ERROR if not enough memory or error */ dberr_t buf_pool_init(ulint total_size, ulint n_instances) { ulint i; const ulint size = total_size / n_instances; ut_ad(n_instances > 0); ut_ad(n_instances <= MAX_BUFFER_POOLS); ut_ad(n_instances == srv_buf_pool_instances); NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; buf_flush_list_added = Buf_flush_list_added_lsns::create(); /* Usually buf_pool_should_madvise is protected by buf_pool_t::chunk_mutex-es, but at this point in time there is no buf_pool_t instances yet, and no risk of race condition with sys_var modifications or buffer pool resizing because we have just started initializing the buffer pool.*/ buf_pool_should_madvise = innobase_should_madvise_buf_pool(); buf_pool_resizing = false; buf_pool_ptr = (buf_pool_t *)ut::zalloc_withkey( UT_NEW_THIS_FILE_PSI_KEY, n_instances * sizeof *buf_pool_ptr); buf_chunk_map_reg = ut::new_withkey<buf_pool_chunk_map_t>(UT_NEW_THIS_FILE_PSI_KEY); std::vector<dberr_t> errs; errs.assign(n_instances, DB_SUCCESS); #ifdef UNIV_LINUX ulint n_cores = sysconf(_SC_NPROCESSORS_ONLN); /* Magic number 8 is from empirical testing on a 4 socket x 10 Cores x 2 HT host. 128G / 16 instances takes about 4 secs, compared to 10 secs without this optimisation.. */ if (n_cores > 8) { n_cores = 8; } #else ulint n_cores = 4; #endif /* UNIV_LINUX */ dberr_t err = DB_SUCCESS; for (i = 0; i < n_instances; /* no op */) { ulint n = i + n_cores; if (n > n_instances) { n = n_instances; } std::vector<std::thread> threads; std::mutex m; for (ulint id = i; id < n; ++id) { threads.emplace_back(std::thread(buf_pool_create, &buf_pool_ptr[id], size, id, &m, std::ref(errs[id]))); } for (ulint id = i; id < n; ++id) { threads[id - i].join(); if (errs[id] != DB_SUCCESS) { err = errs[id]; } } if (err != DB_SUCCESS) { for (size_t id = 0; id < n; ++id) { if (buf_pool_ptr[id].chunks != nullptr) { buf_pool_free_instance(&buf_pool_ptr[id]); } } buf_pool_free(); return (err); } /* Do the next block of instances */ i = n; } buf_pool_set_sizes(); buf_LRU_old_ratio_update(100 * 3 / 8, false); btr_search_sys_create(buf_pool_get_curr_size() / sizeof(void *) / 64); buf_stat_per_index = ut::new_withkey<buf_stat_per_index_t>( ut::make_psi_memory_key(mem_key_buf_stat_per_index_t)); return (DB_SUCCESS); } /** Reallocate a control block. @param[in] buf_pool buffer pool instance @param[in] block pointer to control block @retval true if succeeded or if failed because the block was fixed @retval false if failed because of no free blocks. */ static bool buf_page_realloc(buf_pool_t *buf_pool, buf_block_t *block) { buf_block_t *new_block; ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); /* Try allocating from the buf_pool->free list if it is not empty. This method is executed during withdrawing phase of BufferPool resize only. It is better to not block other user threads as much as possible. So, the main strategy is to passively reserve and use blocks that are already on the free list. Otherwise, if we were to call `buf_LRU_get_free_block` instead of `buf_LRU_get_free_only`, we would have to release the LRU mutex before the call and this would cause a need to break the reallocation loop in `buf_pool_withdraw_blocks`, which would render withdrawing even more inefficient. */ new_block = buf_LRU_get_free_only(buf_pool); if (new_block == nullptr) { return (false); /* free_list was not enough */ } rw_lock_t *hash_lock = buf_page_hash_lock_get(buf_pool, block->page.id); rw_lock_x_lock(hash_lock, UT_LOCATION_HERE); mutex_enter(&block->mutex); if (buf_page_can_relocate(&block->page)) { mutex_enter(&new_block->mutex); memcpy(new_block->frame, block->frame, UNIV_PAGE_SIZE); new (&new_block->page) buf_page_t(block->page); /* relocate LRU list */ ut_ad(block->page.in_LRU_list); ut_ad(!block->page.in_zip_hash); ut_d(block->page.in_LRU_list = false); buf_LRU_adjust_hp(buf_pool, &block->page); auto prev_b = UT_LIST_GET_PREV(LRU, &block->page); UT_LIST_REMOVE(buf_pool->LRU, &block->page); if (prev_b != nullptr) { UT_LIST_INSERT_AFTER(buf_pool->LRU, prev_b, &new_block->page); } else { UT_LIST_ADD_FIRST(buf_pool->LRU, &new_block->page); } if (buf_pool->LRU_old == &block->page) { buf_pool->LRU_old = &new_block->page; } ut_ad(new_block->page.in_LRU_list); /* relocate unzip_LRU list */ if (block->page.zip.data != nullptr) { ut_ad(block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = true); UNIV_MEM_DESC(&new_block->page.zip.data, page_zip_get_size(&new_block->page.zip)); auto prev_block = UT_LIST_GET_PREV(unzip_LRU, block); UT_LIST_REMOVE(buf_pool->unzip_LRU, block); ut_d(block->in_unzip_LRU_list = false); block->page.zip.data = nullptr; page_zip_set_size(&block->page.zip, 0); if (prev_block != nullptr) { UT_LIST_INSERT_AFTER(buf_pool->unzip_LRU, prev_block, new_block); } else { UT_LIST_ADD_FIRST(buf_pool->unzip_LRU, new_block); } } else { ut_ad(!block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = false); } /* relocate buf_pool->page_hash */ ut_ad(block->page.in_page_hash); ut_ad(&block->page == buf_page_hash_get_low(buf_pool, block->page.id)); ut_d(block->page.in_page_hash = false); const auto hash_value = block->page.id.hash(); ut_ad(hash_value == new_block->page.id.hash()); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, hash_value, (&block->page)); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, hash_value, (&new_block->page)); ut_ad(new_block->page.in_page_hash); buf_block_modify_clock_inc(block); memset(block->frame + FIL_PAGE_OFFSET, 0xff, 4); memset(block->frame + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID, 0xff, 4); UNIV_MEM_INVALID(block->frame, UNIV_PAGE_SIZE); buf_block_set_state(block, BUF_BLOCK_REMOVE_HASH); /* Relocate buf_pool->flush_list. */ if (block->page.is_dirty()) { buf_flush_relocate_on_flush_list(&block->page, &new_block->page); } /* Set other flags of buf_block_t */ /* This code should only be executed by buf_pool_resize(), while the adaptive hash index is disabled. */ block->ahi.assert_empty(); new_block->ahi.assert_empty_on_init(); ut_ad(!block->ahi.index); new_block->ahi.index = nullptr; new_block->n_hash_helps = 0; new_block->ahi.recommended_prefix_info = {0, 1, true}; rw_lock_x_unlock(hash_lock); mutex_exit(&block->mutex); mutex_exit(&new_block->mutex); /* Free block */ buf_block_set_state(block, BUF_BLOCK_MEMORY); buf_LRU_block_free_non_file_page(block); } else { rw_lock_x_unlock(hash_lock); mutex_exit(&block->mutex); /* Free new_block */ buf_LRU_block_free_non_file_page(new_block); } return (true); /* free_list was enough */ } static void buf_resize_status(buf_pool_resize_status_code_t status, const char *fmt, ...) MY_ATTRIBUTE((format(printf, 2, 3))); static void buf_resize_status_progress_reset(); static void buf_resize_status_progress_update(uint current_step, uint total_steps); /** Sets the global variable that feeds MySQL's innodb_buffer_pool_resize_status to the specified string. The format and the following parameters are the same as the ones used for printf(3). @param[in] status status code @param[in] fmt format @param[in] ... extra parameters according to fmt */ static void buf_resize_status(buf_pool_resize_status_code_t status, const char *fmt, ...) { buf_pool_resize_status_code.store(status); va_list ap; va_start(ap, fmt); ut_vsnprintf(export_vars.innodb_buffer_pool_resize_status, sizeof(export_vars.innodb_buffer_pool_resize_status), fmt, ap); va_end(ap); ib::info(ER_IB_MSG_BUF_POOL_RESIZE_CODE_STATUS, uint{buf_pool_resize_status_code.load()}, export_vars.innodb_buffer_pool_resize_status); } #ifdef UNIV_DEBUG void buf_pool_resize_wait_for_test() { bool should_wait_for_test = true; while (should_wait_for_test) { should_wait_for_test = false; switch (buf_pool_resize_status_code.load()) { case BUF_POOL_RESIZE_COMPLETE: DBUG_EXECUTE_IF( "ib_buf_pool_resize_complete_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_START: DBUG_EXECUTE_IF( "ib_buf_pool_resize_start_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_DISABLE_AHI: DBUG_EXECUTE_IF( "ib_buf_pool_resize_disable_ahi_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_WITHDRAW_BLOCKS: DBUG_EXECUTE_IF( "ib_buf_pool_resize_withdraw_blocks_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_GLOBAL_LOCK: DBUG_EXECUTE_IF( "ib_buf_pool_resize_global_lock_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_IN_PROGRESS: DBUG_EXECUTE_IF( "ib_buf_pool_resize_in_progress_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_HASH: DBUG_EXECUTE_IF( "ib_buf_pool_resize_hash_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; case BUF_POOL_RESIZE_FAILED: DBUG_EXECUTE_IF( "ib_buf_pool_resize_failed_status_code", should_wait_for_test = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); break; } } } #endif /** Reset progress in current status code. This indicates beginning of a new status code */ static void buf_resize_status_progress_reset() { // Ensure that pervious status code is completed (100) or skipped (0) ut_ad(buf_pool_resize_status_progress.load() == 100 || buf_pool_resize_status_progress.load() == 0); #ifdef UNIV_DEBUG buf_pool_resize_wait_for_test(); #endif buf_pool_resize_status_progress.store(0); ib::info(ER_IB_MSG_BUF_POOL_RESIZE_COMPLETE_CUR_CODE, uint{buf_pool_resize_status_code.load()}); } /** Update progress in current status code. @param[in] current_step current step that is complete. @param[in] total_steps steps to complete before moving to next status code */ static void buf_resize_status_progress_update(uint current_step, uint total_steps) { ut_ad(current_step <= total_steps); buf_pool_resize_status_progress.store((current_step * 100 / total_steps)); ib::info(ER_IB_MSG_BUF_POOL_RESIZE_PROGRESS_UPDATE, uint{buf_pool_resize_status_code.load()}, uint{buf_pool_resize_status_progress.load()}); } /** Determines if a block is intended to be withdrawn. The caller must ensure that there was a sufficient memory barrier to read curr_size and old_size. @param[in] buf_pool buffer pool instance @param[in] block pointer to control block @retval true if will be withdrawn */ bool buf_block_will_withdrawn(buf_pool_t *buf_pool, const buf_block_t *block) { ut_ad(buf_pool->curr_size < buf_pool->old_size); const buf_chunk_t *chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t *echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { if (block >= chunk->blocks && block < chunk->blocks + chunk->size) { return (true); } ++chunk; } return (false); } /** Determines if a frame is intended to be withdrawn. The caller must ensure that there was a sufficient memory barrier to read curr_size and old_size. @param[in] buf_pool buffer pool instance @param[in] ptr pointer to a frame @retval true if will be withdrawn */ bool buf_frame_will_withdrawn(buf_pool_t *buf_pool, const byte *ptr) { ut_ad(buf_pool->curr_size < buf_pool->old_size); const buf_chunk_t *chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t *echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { if (ptr >= chunk->blocks->frame && ptr < (chunk->blocks + chunk->size - 1)->frame + UNIV_PAGE_SIZE) { return (true); } ++chunk; } return (false); } /** Withdraw the buffer pool blocks from end of the buffer pool instance until withdrawn by buf_pool->withdraw_target. @param[in] buf_pool buffer pool instance @retval true if retry is needed */ static bool buf_pool_withdraw_blocks(buf_pool_t *buf_pool) { buf_block_t *block; ulint loop_count = 0; ulint i = buf_pool_index(buf_pool); ib::info(ER_IB_MSG_56) << "buffer pool " << i << " : start to withdraw the last " << buf_pool->withdraw_target << " blocks."; /* Minimize buf_pool->zip_free[i] lists */ buf_buddy_condense_free(buf_pool); mutex_enter(&buf_pool->free_list_mutex); while (UT_LIST_GET_LEN(buf_pool->withdraw) < buf_pool->withdraw_target) { /* try to withdraw from free_list */ ulint count1 = 0; block = reinterpret_cast<buf_block_t *>(UT_LIST_GET_FIRST(buf_pool->free)); while (block != nullptr && UT_LIST_GET_LEN(buf_pool->withdraw) < buf_pool->withdraw_target) { ut_ad(block->page.in_free_list); ut_ad(!block->page.in_flush_list); ut_ad(!block->page.in_LRU_list); ut_a(!buf_page_in_file(&block->page)); buf_block_t *next_block; next_block = reinterpret_cast<buf_block_t *>(UT_LIST_GET_NEXT(list, &block->page)); if (buf_block_will_withdrawn(buf_pool, block)) { /* This should be withdrawn */ UT_LIST_REMOVE(buf_pool->free, &block->page); UT_LIST_ADD_LAST(buf_pool->withdraw, &block->page); ut_d(block->in_withdraw_list = true); count1++; } block = next_block; } mutex_exit(&buf_pool->free_list_mutex); /* relocate blocks/buddies in withdrawn area */ ulint count2 = 0; auto loop_start_time = std::chrono::steady_clock::now(); uint32_t remove_loop_count = 0; mutex_enter(&buf_pool->LRU_list_mutex); for (auto bpage : buf_pool->LRU.removable()) { BPageMutex *block_mutex; block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); if (bpage->zip.data != nullptr && buf_frame_will_withdrawn(buf_pool, static_cast<byte *>(bpage->zip.data))) { if (buf_page_can_relocate(bpage)) { mutex_exit(block_mutex); if (!buf_buddy_realloc(buf_pool, bpage->zip.data, page_zip_get_size(&bpage->zip))) { /* failed to allocate block */ break; } mutex_enter(block_mutex); count2++; } /* NOTE: if the page is in use, not reallocated yet */ } if (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE && buf_block_will_withdrawn(buf_pool, reinterpret_cast<buf_block_t *>(bpage))) { if (buf_page_can_relocate(bpage)) { mutex_exit(block_mutex); if (!buf_page_realloc(buf_pool, reinterpret_cast<buf_block_t *>(bpage))) { /* failed to allocate block */ break; } count2++; } else { mutex_exit(block_mutex); } /* NOTE: if the page is in use, not reallocated yet */ } else { mutex_exit(block_mutex); } if ((remove_loop_count++) % 1000 == 0) { const auto timeout = get_srv_fatal_semaphore_wait_threshold() / 2; const auto time_diff = std::chrono::steady_clock::now() - loop_start_time; if (time_diff > timeout) { /* avoids crash at srv_fatal_semaphore_wait_threshold */ break; } } } mutex_exit(&buf_pool->LRU_list_mutex); mutex_enter(&buf_pool->free_list_mutex); buf_resize_status( BUF_POOL_RESIZE_WITHDRAW_BLOCKS, "buffer pool " ULINTPF " : withdrawing blocks. (%zu/" ULINTPF ")", i, UT_LIST_GET_LEN(buf_pool->withdraw), buf_pool->withdraw_target); ib::info(ER_IB_MSG_57) << "buffer pool " << i << " : withdrew " << count1 << " blocks from free list." << " Tried to relocate " << count2 << " pages (" << UT_LIST_GET_LEN(buf_pool->withdraw) << "/" << buf_pool->withdraw_target << ")."; if (++loop_count >= 10) { /* give up for now. retried after user threads paused. */ mutex_exit(&buf_pool->free_list_mutex); ib::info(ER_IB_MSG_58) << "buffer pool " << i << " : will retry to withdraw later."; /* need retry later */ return (true); } } mutex_exit(&buf_pool->free_list_mutex); /* confirm withdrawn enough */ const buf_chunk_t *chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t *echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { /* If !=BUF_BLOCK_NOT_USED block in the withdrawn area, it means corruption something */ ut_a(buf_block_get_state(block) == BUF_BLOCK_NOT_USED); ut_ad(block->in_withdraw_list); } ++chunk; } ib::info(ER_IB_MSG_59) << "buffer pool " << i << " : withdrawn target " << UT_LIST_GET_LEN(buf_pool->withdraw) << " blocks."; /* retry is not needed */ os_wmb; return (false); } /** resize page_hash and zip_hash for a buffer pool instance. @param[in] buf_pool buffer pool instance */ static void buf_pool_resize_hash(buf_pool_t *buf_pool) { hash_table_t *new_hash_table; ut_ad(mutex_own(&buf_pool->zip_hash_mutex)); /* create a temporary hash_table with twice larger cells[] */ new_hash_table = ut::new_<hash_table_t>(2 * buf_pool->curr_size); /* Only the current thread will use this temporary hash table, so no need for latching */ ut_ad(new_hash_table->type == HASH_TABLE_SYNC_NONE); ut_ad(0 == new_hash_table->n_sync_obj); ut_ad(nullptr == new_hash_table->rw_locks); /* move the data to the temporary hash table */ for (ulint i = 0; i < hash_get_n_cells(buf_pool->page_hash); i++) { buf_page_t *bpage; bpage = static_cast<buf_page_t *>(hash_get_first(buf_pool->page_hash, i)); while (bpage) { buf_page_t *prev_bpage = bpage; bpage = static_cast<buf_page_t *>(HASH_GET_NEXT(hash, prev_bpage)); const auto hash_value = prev_bpage->id.hash(); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, hash_value, prev_bpage); HASH_INSERT(buf_page_t, hash, new_hash_table, hash_value, prev_bpage); } } /* Concurrent threads may be accessing buf_pool->page_hash->n_cells, n_sync_obj and try to latch rw_locks[i] while we are resizing. Therefore we never deallocate page_hash, instead we overwrite its n_cells and cells with the new values "stolen" from the temporary new_hash_table. We also move the old n_cells and cells to the new_hash_table, so they get freed with it. It's important that neither new nor old hash table use `heap`, as otherwise hash chains would got inconsistent after the swap. */ ut_ad(buf_pool->page_hash->adaptive == new_hash_table->adaptive); ut_ad(buf_pool->page_hash->heap == nullptr && new_hash_table->heap == nullptr); std::swap(buf_pool->page_hash->cells, new_hash_table->cells); /* swap(buf_pool->page_hash->n_cells, new_hash_table->n_cells): */ { const auto new_n_cells = new_hash_table->get_n_cells(); new_hash_table->set_n_cells(buf_pool->page_hash->get_n_cells()); buf_pool->page_hash->set_n_cells(new_n_cells); } ut::delete_(new_hash_table); /* recreate zip_hash */ new_hash_table = ut::new_<hash_table_t>(2 * buf_pool->curr_size); for (ulint i = 0; i < hash_get_n_cells(buf_pool->zip_hash); i++) { buf_page_t *bpage; bpage = static_cast<buf_page_t *>(hash_get_first(buf_pool->zip_hash, i)); while (bpage) { buf_page_t *prev_bpage = bpage; bpage = static_cast<buf_page_t *>(HASH_GET_NEXT(hash, prev_bpage)); const auto hash_value = buf_pool_hash_zip(reinterpret_cast<buf_block_t *>(prev_bpage)); HASH_DELETE(buf_page_t, hash, buf_pool->zip_hash, hash_value, prev_bpage); HASH_INSERT(buf_page_t, hash, new_hash_table, hash_value, prev_bpage); } } ut::delete_(buf_pool->zip_hash); buf_pool->zip_hash = new_hash_table; } #ifdef UNIV_DEBUG /** This is a debug routine to inject an memory allocation failure error. */ static void buf_pool_resize_chunk_make_null(buf_chunk_t **new_chunks) { static int count = 0; if (count == 1) { ut::free(*new_chunks); *new_chunks = nullptr; } count++; } #endif /* UNIV_DEBUG */ ulonglong buf_pool_adjust_chunk_unit(ulonglong size) { /* Size unit of buffer pool is larger than srv_buf_pool_size. adjust srv_buf_pool_chunk_unit for srv_buf_pool_size. */ if (size * srv_buf_pool_instances > srv_buf_pool_size) { size = (srv_buf_pool_size + srv_buf_pool_instances - 1) / srv_buf_pool_instances; } /* Make sure that srv_buf_pool_chunk_unit is divisible by blk_sz */ if (size % srv_buf_pool_chunk_unit_blk_sz != 0) { size += srv_buf_pool_chunk_unit_blk_sz - (size % srv_buf_pool_chunk_unit_blk_sz); } /* Make sure that srv_buf_pool_chunk_unit is not larger than max, and don't forget that it also has to be divisible by blk_sz */ const auto CHUNK_UNIT_ALIGNED_MAX = srv_buf_pool_chunk_unit_max - (srv_buf_pool_chunk_unit_max % srv_buf_pool_chunk_unit_blk_sz); if (size > CHUNK_UNIT_ALIGNED_MAX) { size = CHUNK_UNIT_ALIGNED_MAX; } /* Make sure that srv_buf_pool_chunk_unit is not smaller than min */ ut_ad(srv_buf_pool_chunk_unit_min % srv_buf_pool_chunk_unit_blk_sz == 0); if (size < srv_buf_pool_chunk_unit_min) { size = srv_buf_pool_chunk_unit_min; } ut_ad(size >= srv_buf_pool_chunk_unit_min); ut_ad(size <= srv_buf_pool_chunk_unit_max); ut_ad(size % srv_buf_pool_chunk_unit_blk_sz == 0); ut_ad(size % UNIV_PAGE_SIZE == 0); return size; } /** Resize the buffer pool based on srv_buf_pool_size from srv_buf_pool_old_size. */ static void buf_pool_resize() { buf_pool_t *buf_pool; ulint new_instance_size; bool warning = false; NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; ut_ad(!buf_pool_resizing); ut_ad(srv_buf_pool_chunk_unit > 0); /* Assumes that buf_resize_thread has already issued the necessary memory barrier to read srv_buf_pool_size and srv_buf_pool_old_size */ new_instance_size = srv_buf_pool_size / srv_buf_pool_instances; new_instance_size /= UNIV_PAGE_SIZE; buf_resize_status( BUF_POOL_RESIZE_START, "Resizing buffer pool from " ULINTPF " to " ULINTPF " (unit=%llu).", srv_buf_pool_old_size, srv_buf_pool_size, srv_buf_pool_chunk_unit); /* set new limit for all buffer pool for resizing */ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); // No locking needed to read, same thread updated those ut_ad(buf_pool->curr_size == buf_pool->old_size); ut_ad(buf_pool->n_chunks_new == buf_pool->n_chunks); ut_ad(UT_LIST_GET_LEN(buf_pool->withdraw) == 0); buf_pool->curr_size = new_instance_size; ut_ad(srv_buf_pool_chunk_unit % UNIV_PAGE_SIZE == 0); buf_pool->n_chunks_new = new_instance_size * UNIV_PAGE_SIZE / srv_buf_pool_chunk_unit; buf_resize_status_progress_update(i + 1, srv_buf_pool_instances); os_wmb; } buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_DISABLE_AHI, "Disabling adaptive hash index."); /* disable AHI if needed */ const bool btr_search_was_enabled = btr_search_disable(); if (btr_search_was_enabled) { ib::info(ER_IB_MSG_60) << "disabled adaptive hash index."; } /* set withdraw target */ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); if (buf_pool->curr_size < buf_pool->old_size) { ulint withdraw_target = 0; const buf_chunk_t *chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t *echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { withdraw_target += chunk->size; ++chunk; } ut_ad(buf_pool->withdraw_target == 0); buf_pool->withdraw_target = withdraw_target; } buf_resize_status_progress_update(i + 1, srv_buf_pool_instances); } buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_WITHDRAW_BLOCKS, "Withdrawing blocks to be shrunken."); auto withdraw_start_time = std::chrono::system_clock::now(); std::chrono::minutes message_interval{1}; ulint retry_interval = 1; withdraw_retry: bool should_retry_withdraw = false; /* wait for the number of blocks fit to the new size (if needed)*/ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); if (buf_pool->curr_size < buf_pool->old_size) { should_retry_withdraw |= buf_pool_withdraw_blocks(buf_pool); } if (!should_retry_withdraw) { buf_resize_status_progress_update(i + 1, srv_buf_pool_instances); } } if (srv_shutdown_state.load() >= SRV_SHUTDOWN_CLEANUP) { /* abort to resize for shutdown. */ return; } /* abort buffer pool load */ buf_load_abort(); if (should_retry_withdraw && std::chrono::system_clock::now() - withdraw_start_time >= message_interval) { if (message_interval > std::chrono::minutes{15}) { message_interval = std::chrono::minutes{30}; } else { message_interval *= 2; } { /* lock_trx_print_wait_and_mvcc_state() requires exclusive global latch */ locksys::Global_exclusive_latch_guard guard{UT_LOCATION_HERE}; trx_sys_mutex_enter(); bool found = false; for (auto trx : trx_sys->mysql_trx_list) { /* Note that trx->state might be changed from TRX_STATE_NOT_STARTED to TRX_STATE_ACTIVE without usage of trx_sys->mutex when the transaction is read-only (look inside trx_start_low() for details). These loads below might be inconsistent for read-only transactions, because state and start_time for such transactions are saved using the std::memory_order_relaxed, not to risk performance regression on ARM (and this code here is the only victim of the issue, so seems it is a minor issue with potentially incorrect warning message). TODO: check performance gain from this micro-optimization */ const auto trx_state = trx->state.load(std::memory_order_relaxed); const auto trx_start = trx->start_time.load(std::memory_order_relaxed); if (trx_state != TRX_STATE_NOT_STARTED && trx->mysql_thd != nullptr && trx_start != std::chrono::system_clock::time_point{} && withdraw_start_time > trx_start) { if (!found) { ib::warn(ER_IB_MSG_61) << "The following trx might hold the blocks in buffer pool to " "be withdrawn. Buffer pool resizing can complete only after " "all the transactions below release the blocks."; found = true; } lock_trx_print_wait_and_mvcc_state(stderr, trx); } } trx_sys_mutex_exit(); } withdraw_start_time = std::chrono::system_clock::now(); } if (should_retry_withdraw) { ib::info(ER_IB_MSG_62) << "Will retry to withdraw " << retry_interval << " seconds later."; std::this_thread::sleep_for(std::chrono::seconds(retry_interval)); if (retry_interval > 5) { retry_interval = 10; } else { retry_interval *= 2; } goto withdraw_retry; } buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_GLOBAL_LOCK, "Latching whole of buffer pool."); #ifdef UNIV_DEBUG { bool should_wait = true; while (should_wait) { should_wait = false; DBUG_EXECUTE_IF( "ib_buf_pool_resize_wait_before_resize", should_wait = true; std::this_thread::sleep_for(std::chrono::milliseconds(10));); } } #endif /* UNIV_DEBUG */ if (srv_shutdown_state.load() >= SRV_SHUTDOWN_CLEANUP) { return; } /* Indicate critical path */ buf_pool_resizing = true; /* Acquire all buffer pool mutexes and hash table locks */ /* TODO: while we certainly lock a lot here, it does not necessarily buy us enough correctness. Exploits the fact that freed pages must have no pointers to them from the buffer pool nor from any other thread except for the freeing one to remove redundant locking. The same applies to freshly allocated pages before any pointers to them are published.*/ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->chunks_mutex)); } buf_resize_status_progress_update(1, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->LRU_list_mutex)); } buf_resize_status_progress_update(2, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { hash_lock_x_all(buf_pool_from_array(i)->page_hash); } buf_resize_status_progress_update(3, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->zip_free_mutex)); } buf_resize_status_progress_update(4, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->free_list_mutex)); } buf_resize_status_progress_update(5, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->zip_hash_mutex)); } buf_resize_status_progress_update(6, 7); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { mutex_enter(&(buf_pool_from_array(i)->flush_state_mutex)); } buf_resize_status_progress_update(7, 7); ut::delete_(buf_chunk_map_reg); buf_chunk_map_reg = ut::new_withkey<buf_pool_chunk_map_t>(UT_NEW_THIS_FILE_PSI_KEY); buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_IN_PROGRESS, "Starting pool resize"); /* add/delete chunks */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t *buf_pool = buf_pool_from_array(i); buf_chunk_t *chunk; buf_chunk_t *echunk; buf_resize_status(BUF_POOL_RESIZE_IN_PROGRESS, "buffer pool " ULINTPF " :" " resizing with chunks " ULINTPF " to " ULINTPF ".", i, buf_pool->n_chunks, buf_pool->n_chunks_new); if (buf_pool->n_chunks_new < buf_pool->n_chunks) { /* delete chunks */ chunk = buf_pool->chunks + buf_pool->n_chunks_new; echunk = buf_pool->chunks + buf_pool->n_chunks; ulint sum_freed = 0; while (chunk < echunk) { buf_block_t *block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free(&block->debug_latch)); } buf_pool->deallocate_chunk(chunk); sum_freed += chunk->size; ++chunk; } /* discard withdraw list */ buf_pool->withdraw.clear(); buf_pool->withdraw_target = 0; ib::info(ER_IB_MSG_63) << "buffer pool " << i << " : " << buf_pool->n_chunks - buf_pool->n_chunks_new << " chunks (" << sum_freed << " blocks) were freed."; buf_pool->n_chunks = buf_pool->n_chunks_new; } { /* reallocate buf_pool->chunks */ const ulint new_chunks_size = buf_pool->n_chunks_new * sizeof(*chunk); buf_chunk_t *new_chunks = reinterpret_cast<buf_chunk_t *>( ut::zalloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, new_chunks_size)); DBUG_EXECUTE_IF("buf_pool_resize_chunk_null", buf_pool_resize_chunk_make_null(&new_chunks);); if (new_chunks == nullptr) { ib::error(ER_IB_MSG_64) << "buffer pool " << i << " : failed to allocate" " the chunk array."; buf_pool->n_chunks_new = buf_pool->n_chunks; warning = true; buf_pool->chunks_old = nullptr; for (ulint j = 0; j < buf_pool->n_chunks_new; j++) { buf_pool_register_chunk(&buf_pool->chunks[j]); } goto calc_buf_pool_size; } ulint n_chunks_copy = std::min(buf_pool->n_chunks_new, buf_pool->n_chunks); memcpy(new_chunks, buf_pool->chunks, n_chunks_copy * sizeof(*chunk)); for (ulint j = 0; j < n_chunks_copy; j++) { buf_pool_register_chunk(&new_chunks[j]); } buf_pool->chunks_old = buf_pool->chunks; buf_pool->chunks = new_chunks; } if (buf_pool->n_chunks_new > buf_pool->n_chunks) { /* add chunks */ chunk = buf_pool->chunks + buf_pool->n_chunks; echunk = buf_pool->chunks + buf_pool->n_chunks_new; ulint sum_added = 0; ulint n_chunks = buf_pool->n_chunks; while (chunk < echunk) { ulonglong unit = srv_buf_pool_chunk_unit; if (!buf_chunk_init(buf_pool, chunk, unit, nullptr)) { ib::error(ER_IB_MSG_65) << "buffer pool " << i << " : failed to allocate" " new memory."; warning = true; buf_pool->n_chunks_new = n_chunks; break; } sum_added += chunk->size; ++n_chunks; ++chunk; } ib::info(ER_IB_MSG_66) << "buffer pool " << i << " : " << buf_pool->n_chunks_new - buf_pool->n_chunks << " chunks (" << sum_added << " blocks) were added."; buf_pool->n_chunks = n_chunks; } calc_buf_pool_size: /* recalc buf_pool->curr_size */ ulint new_size = 0; chunk = buf_pool->chunks; do { new_size += chunk->size; } while (++chunk < buf_pool->chunks + buf_pool->n_chunks); buf_pool->curr_size = new_size; buf_pool->n_chunks_new = buf_pool->n_chunks; if (buf_pool->chunks_old) { ut::free(buf_pool->chunks_old); buf_pool->chunks_old = nullptr; } buf_resize_status_progress_update(i + 1, srv_buf_pool_instances); } /* set instance sizes */ { ulint curr_size = 0; for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); ut_ad(UT_LIST_GET_LEN(buf_pool->withdraw) == 0); buf_pool->read_ahead_area = static_cast<page_no_t>(std::min( BUF_READ_AHEAD_PAGES, ut_2_power_up(buf_pool->curr_size / BUF_READ_AHEAD_PORTION))); buf_pool->curr_pool_size = buf_pool->curr_size * UNIV_PAGE_SIZE; curr_size += buf_pool->curr_pool_size; buf_pool->old_size = buf_pool->curr_size; } srv_buf_pool_curr_size = curr_size; innodb_set_buf_pool_size(buf_pool_size_align(curr_size)); } const bool new_size_too_diff = srv_buf_pool_base_size > srv_buf_pool_size * 2 || srv_buf_pool_base_size * 2 < srv_buf_pool_size; /* Normalize page_hash and zip_hash, if the new size is too different */ if (!warning && new_size_too_diff) { buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_HASH, "Resizing hash tables."); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t *buf_pool = buf_pool_from_array(i); buf_pool_resize_hash(buf_pool); ib::info(ER_IB_MSG_67) << "buffer pool " << i << " : hash tables were resized."; buf_resize_status_progress_update(i + 1, srv_buf_pool_instances); } } /* Release all buf_pool_mutex/page_hash */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t *buf_pool = buf_pool_from_array(i); mutex_exit(&buf_pool->chunks_mutex); mutex_exit(&buf_pool->flush_state_mutex); mutex_exit(&buf_pool->zip_hash_mutex); mutex_exit(&buf_pool->free_list_mutex); mutex_exit(&buf_pool->zip_free_mutex); hash_unlock_x_all(buf_pool->page_hash); mutex_exit(&buf_pool->LRU_list_mutex); } buf_pool_resizing = false; /* Normalize other components, if the new size is too different */ if (!warning && new_size_too_diff) { srv_buf_pool_base_size = srv_buf_pool_size; buf_resize_status(BUF_POOL_RESIZE_HASH, "Resizing also other hash tables."); /* normalize lock_sys */ srv_lock_table_size = 5 * (srv_buf_pool_size / UNIV_PAGE_SIZE); lock_sys_resize(srv_lock_table_size); /* normalize btr_search_sys */ btr_search_sys_resize(buf_pool_get_curr_size() / sizeof(void *) / 64); /* normalize dict_sys */ dict_resize(); ib::info(ER_IB_MSG_68) << "Resized hash tables at lock_sys," " adaptive hash index, dictionary."; } /* normalize ibuf->max_size */ ibuf_max_size_update(srv_change_buffer_max_size); if (srv_buf_pool_old_size != srv_buf_pool_size) { ib::info(ER_IB_MSG_69) << "Completed to resize buffer pool from " << srv_buf_pool_old_size << " to " << srv_buf_pool_size << "."; srv_buf_pool_old_size = srv_buf_pool_size; os_wmb; } /* enable AHI if needed */ if (btr_search_was_enabled) { btr_search_enable(); ib::info(ER_IB_MSG_70) << "Re-enabled adaptive hash index."; } char now[32]; ut_sprintf_timestamp(now); if (!warning) { buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_COMPLETE, "Completed resizing buffer pool at %s.", now); buf_resize_status_progress_update(1, 1); } else { buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_FAILED, "Resizing buffer pool failed," " finished resizing at %s.", now); buf_resize_status_progress_update(1, 1); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ return; } /** This is the thread for resizing buffer pool. It waits for an event and when waked up either performs a resizing and sleeps again. */ void buf_resize_thread() { while (srv_shutdown_state.load() < SRV_SHUTDOWN_CLEANUP) { os_event_wait(srv_buf_resize_event); os_event_reset(srv_buf_resize_event); if (srv_shutdown_state.load() >= SRV_SHUTDOWN_CLEANUP) { break; } os_rmb; if (srv_buf_pool_old_size == srv_buf_pool_size) { std::ostringstream sout; sout << "Size did not change (old size = new size = " << srv_buf_pool_size << ". Nothing to do."; buf_resize_status_progress_update(1, 1); buf_resize_status_progress_reset(); buf_resize_status(BUF_POOL_RESIZE_COMPLETE, "%s", sout.str().c_str()); /* nothing to do */ continue; } buf_pool_resize(); } } /** Clears the adaptive hash index on all pages in the buffer pool. */ void buf_pool_clear_hash_index(void) { ut_ad(!buf_pool_resizing); ut_ad(!btr_search_enabled); DEBUG_SYNC_C("purge_wait_for_btr_search_latch"); bool pause_before_processing = DBUG_EVALUATE_IF( "buf_pool_clear_hash_index_check_other_blocks", true, false); for (ulong p = 0; p < srv_buf_pool_instances; p++) { buf_pool_t *const buf_pool = buf_pool_from_array(p); buf_chunk_t *const chunks = buf_pool->chunks; buf_chunk_t *chunk = chunks + buf_pool->n_chunks; while (--chunk >= chunks) { buf_block_t *block = chunk->blocks; ulint i = chunk->size; for (; i--; block++) { block->ahi.validate(); /* As AHI is disabled, blocks can't be added to AHI, but can only be removed from it, so once block->ahi.index becomes nullptr, it can't become non-null again. */ if (block->ahi.index.load() == nullptr) { /* The block is already not in AHI, and it can't be added before the AHI is re-enabled, so there's nothing to be done here. */ continue; } /* Identify target block and sync with test */ if (pause_before_processing && block->page.old && !block->page.is_dirty()) { DEBUG_SYNC_C("buf_pool_clear_hash_index_will_process_block"); pause_before_processing = false; } /* This latch will prevent block state transitions. It is important for us to not change blocks that are kept in private in BUF_BLOCK_REMOVE_HASH state by some concurrently executed buf_LRU_free_page(). */ mutex_enter(&block->mutex); auto block_mutex_guard = create_scope_guard([block]() { mutex_exit(&block->mutex); }); block->ahi.validate(); switch (buf_block_get_state(block)) { case BUF_BLOCK_FILE_PAGE: /* When the page is in the Buffer Pool, it can't be removed from AHI (by the btr_search_drop_page_hash_index()) while AHI is disabled, unless it is called from buf_LRU_free_page(). If it was freed using buf_LRU_free_page(), then the state would not be BUF_BLOCK_FILE_PAGE, but it could have already been re-assigned to some different page (ABA problem on state). The index would be nullptr then and only then. */ if (block->ahi.index.load() == nullptr) { continue; } break; case BUF_BLOCK_REMOVE_HASH: /* It is possible that a parallel thread might have set this state. It means AHI for this block is being removed. We will wait for this block to be removed from AHI by waiting for the index's AHI reference counter to drop to zero. */ continue; default: /* No other state should have AHI */ ut_ad(block->ahi.index == nullptr); ut_ad(block->ahi.n_pointers == 0); /* Go to next block as AHI is already nullptr */ continue; } #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG block->ahi.n_pointers = 0; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ /* It is important to have the index reset to nullptr after the n_pointers is set to 0, so it synchronizes correctly with check in buf_block_t::ahi_t::validate(). */ btr_search_set_block_not_cached(block); } } } /* Main intent was to identify target block. Due to rare race conditions, such block is not found. To prevent timeout, unblock in case target block is not found */ if (pause_before_processing) { DEBUG_SYNC_C("buf_pool_clear_hash_index_will_process_block"); } } /** Relocate a buffer control block. Relocates the block on the LRU list and in buf_pool->page_hash. Does not relocate bpage->list. The caller must take care of relocating bpage->list. @param[in,out] bpage control block being relocated, buf_page_get_state() must be BUF_BLOCK_ZIP_DIRTY or BUF_BLOCK_ZIP_PAGE @param[in,out] dpage destination control block */ static void buf_relocate(buf_page_t *bpage, buf_page_t *dpage) { buf_page_t *b; buf_pool_t *buf_pool = buf_pool_from_bpage(bpage); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); ut_ad(buf_page_hash_lock_held_x(buf_pool, bpage)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_a(buf_page_get_io_fix(bpage) == BUF_IO_NONE); ut_a(bpage->buf_fix_count == 0); ut_ad(bpage->in_LRU_list); ut_ad(!bpage->in_zip_hash); ut_ad(bpage->in_page_hash); ut_ad(bpage == buf_page_hash_get_low(buf_pool, bpage->id)); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); #ifdef UNIV_DEBUG switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_FILE_PAGE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; case BUF_BLOCK_ZIP_DIRTY: case BUF_BLOCK_ZIP_PAGE: break; } #endif /* UNIV_DEBUG */ new (dpage) buf_page_t(*bpage); /* Important that we adjust the hazard pointer before removing bpage from LRU list. */ buf_LRU_adjust_hp(buf_pool, bpage); ut_d(bpage->in_LRU_list = false); ut_d(bpage->in_page_hash = false); /* relocate buf_pool->LRU */ b = UT_LIST_GET_PREV(LRU, bpage); UT_LIST_REMOVE(buf_pool->LRU, bpage); if (b != nullptr) { UT_LIST_INSERT_AFTER(buf_pool->LRU, b, dpage); } else { UT_LIST_ADD_FIRST(buf_pool->LRU, dpage); } if (buf_pool->LRU_old == bpage) { buf_pool->LRU_old = dpage; #ifdef UNIV_LRU_DEBUG /* buf_pool->LRU_old must be the first item in the LRU list whose "old" flag is set. */ ut_a(buf_pool->LRU_old->old); ut_a(!UT_LIST_GET_PREV(LRU, buf_pool->LRU_old) || !UT_LIST_GET_PREV(LRU, buf_pool->LRU_old)->old); ut_a(!UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old) || UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old)->old); } else { /* Check that the "old" flag is consistent in the block and its neighbours. */ buf_page_set_old(dpage, buf_page_is_old(dpage)); #endif /* UNIV_LRU_DEBUG */ } ut_d(CheckInLRUList::validate(buf_pool)); /* relocate buf_pool->page_hash */ const auto hash_value = bpage->id.hash(); ut_ad(hash_value == dpage->id.hash()); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, hash_value, bpage); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, hash_value, dpage); } /* Hazard Pointer implementation. */ /** Set current value @param bpage buffer block to be set as hp */ void HazardPointer::set(buf_page_t *bpage) { ut_ad(mutex_own(m_mutex)); ut_ad(!bpage || buf_pool_from_bpage(bpage) == m_buf_pool); ut_ad(!bpage || buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); m_hp = bpage; } /** Checks if a bpage is the hp @param bpage buffer block to be compared @return true if it is hp */ bool HazardPointer::is_hp(const buf_page_t *bpage) { ut_ad(mutex_own(m_mutex)); ut_ad(!m_hp || buf_pool_from_bpage(m_hp) == m_buf_pool); ut_ad(!bpage || buf_pool_from_bpage(bpage) == m_buf_pool); return (bpage == m_hp); } /** Adjust the value of hp for moving. This happens when some other thread working on the same list attempts to relocate the hp of the page. @param bpage buffer block to be compared @param dpage buffer block to be moved to */ void HazardPointer::move(const buf_page_t *bpage, buf_page_t *dpage) { ut_ad(bpage != nullptr); ut_ad(dpage != nullptr); if (is_hp(bpage)) { m_hp = dpage; } } /** Adjust the value of hp. This happens when some other thread working on the same list attempts to remove the hp from the list. @param bpage buffer block to be compared */ void FlushHp::adjust(const buf_page_t *bpage) { ut_ad(bpage != nullptr); /** We only support reverse traversal for now. */ if (is_hp(bpage)) { m_hp = UT_LIST_GET_PREV(list, m_hp); } ut_ad(!m_hp || m_hp->in_flush_list); } /** Adjust the value of hp. This happens when some other thread working on the same list attempts to remove the hp from the list. @param bpage buffer block to be compared */ void LRUHp::adjust(const buf_page_t *bpage) { ut_ad(bpage); /** We only support reverse traversal for now. */ if (is_hp(bpage)) { m_hp = UT_LIST_GET_PREV(LRU, m_hp); } ut_ad(!m_hp || m_hp->in_LRU_list); } /** Selects from where to start a scan. If we have scanned too deep into the LRU list it resets the value to the tail of the LRU list. @return buf_page_t from where to start scan. */ buf_page_t *LRUItr::start() { ut_ad(mutex_own(m_mutex)); if (!m_hp || m_hp->old) { m_hp = UT_LIST_GET_LAST(m_buf_pool->LRU); } return (m_hp); } bool buf_pool_watch_is_sentinel(const buf_pool_t *buf_pool, const buf_page_t *bpage) { /* We must own the appropriate hash lock. */ ut_ad(buf_page_hash_lock_held_s_or_x(buf_pool, bpage)); ut_ad(buf_page_in_file(bpage)); if (bpage < &buf_pool->watch[0] || bpage >= &buf_pool->watch[BUF_POOL_WATCH_SIZE]) { ut_ad(buf_page_get_state(bpage) != BUF_BLOCK_ZIP_PAGE || bpage->zip.data != nullptr); return false; } ut_ad(buf_page_get_state(bpage) == BUF_BLOCK_ZIP_PAGE); ut_ad(!bpage->in_zip_hash); ut_ad(bpage->in_page_hash); ut_ad(bpage->zip.data == nullptr); return true; } /** Add watch for the given page to be read in. Caller must have appropriate hash_lock for the bpage and hold the LRU list mutex to avoid a race condition with buf_LRU_free_page inserting the same page into the page hash. This function may release the hash_lock and reacquire it. @param[in] page_id page id @param[in,out] hash_lock hash_lock currently latched @return NULL if watch set, block if the page is in the buffer pool */ static buf_page_t *buf_pool_watch_set(const page_id_t &page_id, rw_lock_t **hash_lock) { buf_page_t *bpage; ulint i; buf_pool_t *buf_pool = buf_pool_get(page_id); ut_ad(*hash_lock == buf_page_hash_lock_get(buf_pool, page_id)); ut_ad(rw_lock_own(*hash_lock, RW_LOCK_X)); bpage = buf_page_hash_get_low(buf_pool, page_id); if (bpage != nullptr) { page_found: if (!buf_pool_watch_is_sentinel(buf_pool, bpage)) { /* The page was loaded meanwhile. */ return (bpage); } /* Add to an existing watch. */ buf_block_fix(bpage); return (nullptr); } /* From this point this function becomes fairly heavy in terms of latching. We acquire all the hash_locks. They are needed because we don't want to read any stale information in buf_pool->watch[]. However, it is not in the critical code path as this function will be called only by the purge thread. */ /* To obey latching order first release the hash_lock. */ rw_lock_x_unlock(*hash_lock); mutex_enter(&buf_pool->LRU_list_mutex); hash_lock_x_all(buf_pool->page_hash); /* If not own LRU_list_mutex, page_hash can be changed. */ *hash_lock = buf_page_hash_lock_get(buf_pool, page_id); /* We have to recheck that the page was not loaded or a watch set by some other purge thread. This is because of the small time window between when we release the hash_lock to lock all the hash_locks. */ bpage = buf_page_hash_get_low(buf_pool, page_id); if (bpage) { mutex_exit(&buf_pool->LRU_list_mutex); hash_unlock_x_all_but(buf_pool->page_hash, *hash_lock); goto page_found; } /* The maximum number of purge threads should never exceed BUF_POOL_WATCH_SIZE. So there is no way for purge thread instance to hold a watch when setting another watch. */ for (i = 0; i < BUF_POOL_WATCH_SIZE; i++) { bpage = &buf_pool->watch[i]; ut_ad(bpage->access_time == std::chrono::steady_clock::time_point{}); ut_ad(bpage->get_newest_lsn() == 0); ut_ad(!bpage->is_dirty()); ut_ad(bpage->zip.data == nullptr); ut_ad(!bpage->in_zip_hash); switch (bpage->state) { case BUF_BLOCK_POOL_WATCH: ut_ad(!bpage->in_page_hash); ut_ad(bpage->buf_fix_count == 0); bpage->state = BUF_BLOCK_ZIP_PAGE; bpage->reset_page_id(page_id); bpage->buf_fix_count.store(1); bpage->buf_pool_index = buf_pool_index(buf_pool); ut_d(bpage->in_page_hash = true); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, page_id.hash(), bpage); mutex_exit(&buf_pool->LRU_list_mutex); /* Once the sentinel is in the page_hash we can safely release all locks except just the relevant hash_lock */ hash_unlock_x_all_but(buf_pool->page_hash, *hash_lock); return (nullptr); case BUF_BLOCK_ZIP_PAGE: ut_ad(bpage->in_page_hash); ut_ad(bpage->buf_fix_count > 0); break; default: ut_error; } } /* Allocation failed. Either the maximum number of purge threads should never exceed BUF_POOL_WATCH_SIZE, or this code should be modified to return a special non-NULL value and the caller should purge the record directly. */ ut_error; } /** Remove the sentinel block for the watch before replacing it with a real block. buf_page_watch_unset() or buf_page_watch_occurred() will notice that the block has been replaced with the real block. @param[in,out] buf_pool buffer pool instance @param[in,out] watch sentinel for watch */ static void buf_pool_watch_remove(buf_pool_t *buf_pool, buf_page_t *watch) { #ifdef UNIV_DEBUG /* We must also own the appropriate hash cell's mutex. */ rw_lock_t *hash_lock = buf_page_hash_lock_get(buf_pool, watch->id); ut_ad(rw_lock_own(hash_lock, RW_LOCK_X)); #endif /* UNIV_DEBUG */ ut_ad(buf_page_get_state(watch) == BUF_BLOCK_ZIP_PAGE); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, watch->id.hash(), watch); ut_d(watch->in_page_hash = false); watch->buf_fix_count.store(0); watch->state = BUF_BLOCK_POOL_WATCH; watch->reset_page_id(); } /** Stop watching if the page has been read in. buf_pool_watch_set(same_page_id) must have returned NULL before. @param[in] page_id page id */ void buf_pool_watch_unset(const page_id_t &page_id) { buf_page_t *bpage; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock, UT_LOCATION_HERE); /* page_hash can be changed. */ hash_lock = buf_page_hash_lock_x_confirm(hash_lock, buf_pool, page_id); /* The page must exist because buf_pool_watch_set() increments buf_fix_count. */ bpage = buf_page_hash_get_low(buf_pool, page_id); if (buf_block_unfix(bpage) == 0 && buf_pool_watch_is_sentinel(buf_pool, bpage)) { buf_pool_watch_remove(buf_pool, bpage); } rw_lock_x_unlock(hash_lock); } /** Check if the page has been read in. This may only be called after buf_pool_watch_set(same_page_id) has returned NULL and before invoking buf_pool_watch_unset(same_page_id). @param[in] page_id page id @return false if the given page was not read in, true if it was */ bool buf_pool_watch_occurred(const page_id_t &page_id) { buf_page_t *bpage; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_s_lock(hash_lock, UT_LOCATION_HERE); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_s_confirm(hash_lock, buf_pool, page_id); /* The page must exist because buf_pool_watch_set() increments buf_fix_count. */ bpage = buf_page_hash_get_low(buf_pool, page_id); auto ret = !buf_pool_watch_is_sentinel(buf_pool, bpage); rw_lock_s_unlock(hash_lock); return ret; } /** Moves a page to the start of the buffer pool LRU list. This high-level function can be used to prevent an important page from slipping out of the buffer pool. @param[in,out] bpage buffer block of a file page */ void buf_page_make_young(buf_page_t *bpage) { buf_pool_t *buf_pool = buf_pool_from_bpage(bpage); mutex_enter(&buf_pool->LRU_list_mutex); ut_a(buf_page_in_file(bpage)); buf_LRU_make_block_young(bpage); mutex_exit(&buf_pool->LRU_list_mutex); } void buf_page_make_old(buf_page_t *bpage) { buf_pool_t *buf_pool = buf_pool_from_bpage(bpage); mutex_enter(&buf_pool->LRU_list_mutex); ut_a(buf_page_in_file(bpage)); buf_LRU_make_block_old(bpage); mutex_exit(&buf_pool->LRU_list_mutex); } /** Moves a page to the start of the buffer pool LRU list if it is too old. This high-level function can be used to prevent an important page from slipping out of the buffer pool. The page must be fixed to the buffer pool. @param[in,out] bpage buffer block of a file page */ static void buf_page_make_young_if_needed(buf_page_t *bpage) { ut_ad(!mutex_own(&buf_pool_from_bpage(bpage)->LRU_list_mutex)); ut_ad(bpage->buf_fix_count > 0); ut_a(buf_page_in_file(bpage)); if (buf_page_peek_if_too_old(bpage)) { buf_page_make_young(bpage); } } #ifdef UNIV_DEBUG /** Sets file_page_was_freed true if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @param[in] page_id page id @return control block if found in page hash table, otherwise NULL */ buf_page_t *buf_page_set_file_page_was_freed(const page_id_t &page_id) { buf_page_t *bpage; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock; bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { BPageMutex *block_mutex = buf_page_get_mutex(bpage); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); bpage->file_page_was_freed = true; mutex_exit(block_mutex); } return (bpage); } /** Sets file_page_was_freed false if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @param[in] page_id page id @return control block if found in page hash table, otherwise NULL */ buf_page_t *buf_page_reset_file_page_was_freed(const page_id_t &page_id) { buf_page_t *bpage; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock; bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { BPageMutex *block_mutex = buf_page_get_mutex(bpage); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); bpage->file_page_was_freed = false; mutex_exit(block_mutex); } return (bpage); } #endif /* UNIV_DEBUG */ /** Attempts to discard the uncompressed frame of a compressed page. The caller should not be holding any mutexes when this function is called. @param[in] page_id page id */ static void buf_block_try_discard_uncompressed(const page_id_t &page_id) { buf_page_t *bpage; buf_pool_t *buf_pool = buf_pool_get(page_id); /* Since we need to acquire buf_pool->LRU_list_mutex to discard the uncompressed frame and because page_hash mutex resides below buf_pool->LRU_list_mutex in sync ordering therefore we must first release the page_hash mutex. This means that the block in question can move out of page_hash. Therefore we need to check again if the block is still in page_hash. */ mutex_enter(&buf_pool->LRU_list_mutex); bpage = buf_page_hash_get(buf_pool, page_id); if (bpage) { BPageMutex *block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); if (buf_LRU_free_page(bpage, false)) { return; } mutex_exit(block_mutex); } mutex_exit(&buf_pool->LRU_list_mutex); } /** Get read access to a compressed page (usually of type FIL_PAGE_TYPE_ZBLOB or FIL_PAGE_TYPE_ZBLOB2). The page must be released with buf_page_release_zip(). NOTE: the page is not protected by any latch. Mutual exclusion has to be implemented at a higher level. In other words, all possible accesses to a given page through this function must be protected by the same set of mutexes or latches. @param[in] page_id page id @param[in] page_size page size @return pointer to the block */ buf_page_t *buf_page_get_zip(const page_id_t &page_id, const page_size_t &page_size) { buf_page_t *bpage; BPageMutex *block_mutex; rw_lock_t *hash_lock; bool discard_attempted = false; buf_pool_t *buf_pool = buf_pool_get(page_id); Counter::inc(buf_pool->stat.m_n_page_gets, page_id.page_no()); for (;;) { lookup: /* The following call will also grab the page_hash mutex if the page is found. */ bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); ut_ad(!bpage->was_stale()); break; } /* Page not in buf_pool: needs to be read from file */ ut_ad(!hash_lock); buf_read_page(page_id, page_size); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ } ut_ad(buf_page_hash_lock_held_s(buf_pool, bpage)); if (bpage->zip.data == nullptr) { /* There is no compressed page. */ err_exit: rw_lock_s_unlock(hash_lock); return (nullptr); } ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: buf_block_fix(bpage); block_mutex = &buf_pool->zip_mutex; mutex_enter(block_mutex); goto got_block; case BUF_BLOCK_FILE_PAGE: /* Discard the uncompressed page frame if possible. */ if (!discard_attempted) { rw_lock_s_unlock(hash_lock); buf_block_try_discard_uncompressed(page_id); discard_attempted = true; goto lookup; } block_mutex = &((buf_block_t *)bpage)->mutex; mutex_enter(block_mutex); buf_block_buf_fix_inc((buf_block_t *)bpage, UT_LOCATION_HERE); goto got_block; } ut_error; goto err_exit; got_block: auto must_read = buf_page_get_io_fix(bpage) == BUF_IO_READ; rw_lock_s_unlock(hash_lock); ut_ad(!bpage->file_page_was_freed); buf_page_set_accessed(bpage); mutex_exit(block_mutex); buf_page_make_young_if_needed(bpage); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(bpage->buf_fix_count > 0); ut_a(buf_page_in_file(bpage)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ if (must_read) { /* Let us wait until the read operation completes */ for (;;) { enum buf_io_fix io_fix; mutex_enter(block_mutex); io_fix = buf_page_get_io_fix(bpage); mutex_exit(block_mutex); if (io_fix == BUF_IO_READ) { std::this_thread::sleep_for(WAIT_FOR_READ); } else { break; } } } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ return (bpage); } /** Initialize some fields of a control block. */ static inline void buf_block_init_low( buf_block_t *block) /*!< in: block to init */ { /* No adaptive hash index entries may point to a previously unused (and now freshly allocated) block. */ block->ahi.assert_empty_on_init(); block->ahi.index = nullptr; block->made_dirty_with_no_latch = false; block->n_hash_helps = 0; block->ahi.recommended_prefix_info = {0, 1, true}; ut_a(block->page.get_space() != nullptr); } #endif /* !UNIV_HOTBACKUP */ /** Decompress a block. @return true if successful */ bool buf_zip_decompress(buf_block_t *block, /*!< in/out: block */ bool check) /*!< in: true=verify the page checksum */ { const byte *frame = block->page.zip.data; ut_ad(block->page.size.is_compressed()); ut_a(block->page.id.space() != 0); BlockReporter compressed = BlockReporter(false, frame, block->page.size, false); if (check && !compressed.verify_zip_checksum()) { ib::error(ER_IB_MSG_71) << "Compressed page checksum mismatch " << block->page.id << "): stored: " << mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM) << ", crc32: " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_CRC32) << " innodb: " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_INNODB) << ", none: " << compressed.calc_zip_checksum(SRV_CHECKSUM_ALGORITHM_NONE); return false; } switch (fil_page_get_type(frame)) { case FIL_PAGE_INDEX: case FIL_PAGE_SDI: case FIL_PAGE_RTREE: if (page_zip_decompress(&block->page.zip, block->frame, true)) { return true; } ib::error(ER_IB_MSG_72) << "Unable to decompress space " << block->page.id.space() << " page " << block->page.id.page_no(); return false; case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: case FIL_PAGE_SDI_ZBLOB: case FIL_PAGE_TYPE_ZLOB_FIRST: case FIL_PAGE_TYPE_ZLOB_DATA: case FIL_PAGE_TYPE_ZLOB_INDEX: case FIL_PAGE_TYPE_ZLOB_FRAG: case FIL_PAGE_TYPE_ZLOB_FRAG_ENTRY: /* Copy to uncompressed storage. */ memcpy(block->frame, frame, block->page.size.physical()); return true; } ib::error(ER_IB_MSG_73) << "Unknown compressed page type " << fil_page_get_type(frame); return false; } #ifndef UNIV_HOTBACKUP /** Get a buffer block from an adaptive hash index pointer. This function does not return if the block is not identified. @param[in] ptr pointer to within a page frame @return pointer to block, never NULL */ buf_block_t *buf_block_from_ahi(const byte *ptr) { buf_pool_chunk_map_t::iterator it; buf_pool_chunk_map_t *chunk_map = buf_chunk_map_reg; ut_ad(!buf_pool_resizing); buf_chunk_t *chunk; it = chunk_map->upper_bound(ptr); ut_a(it != chunk_map->begin()); if (it == chunk_map->end()) { chunk = chunk_map->rbegin()->second; } else { chunk = (--it)->second; } ulint offs = ptr - chunk->blocks->frame; offs >>= UNIV_PAGE_SIZE_SHIFT; ut_a(offs < chunk->size); buf_block_t *block = &chunk->blocks[offs]; /* The function buf_chunk_init() invokes buf_block_init() so that block[n].frame == block->frame + n * UNIV_PAGE_SIZE. Check it. */ ut_ad(block->frame == page_align(ptr)); /* Read the state of the block without holding a mutex. A state transition from BUF_BLOCK_FILE_PAGE to BUF_BLOCK_REMOVE_HASH is possible during this execution. */ ut_d(const buf_page_state state = buf_block_get_state(block)); ut_ad(state == BUF_BLOCK_FILE_PAGE || state == BUF_BLOCK_REMOVE_HASH); return (block); } bool buf_is_block_in_instance(const buf_pool_t *buf_pool, const buf_block_t *ptr) { const size_t n_chunks = std::min(buf_pool->n_chunks, buf_pool->n_chunks_new); for (size_t i = 0; i < n_chunks; ++i) { if (buf_pool->chunks[i].contains(ptr)) { return true; } } return false; } #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /** Return true if probe is enabled. @return true if probe enabled. */ static bool buf_debug_execute_is_force_flush() { DBUG_EXECUTE_IF("ib_buf_force_flush", return (true);); /* This is used during quiesce testing, we want to ensure maximum buffering by the change buffer. */ if (srv_ibuf_disable_background_merge) { return (true); } return (false); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /** Wait for the block to be read in. @param[in] block The block to check */ static void buf_wait_for_read(buf_block_t *block) { /* Note: This unlocked read of IO fix is safe as we have the block buf-fixed. The page can only transition away from the IO_READ state, and once this is done, it will not be IO_READ again as long as we have it buf-fixed. The repeated reads of io_fix will not be optimized out because it's an atomic variable.*/ while (block->page.was_io_fix_read()) { /* Page is X-latched on block->lock until the read is completed. Let's just wait for S-lock on block->lock, it will be granted as soon as the read completes. */ rw_lock_s_lock(&block->lock, UT_LOCATION_HERE); rw_lock_s_unlock(&block->lock); } } /** This class implements the rules for fetching the pages from the buffer pool depending on the context. It will set the page latches as requested, detect and handle stale reads and initiate read requests if required. */ template <typename T> struct Buf_fetch { public: /** Constructor. @param[in] page_id ID of page to fetch. @param[in] page_size Size of page on disk. */ Buf_fetch(const page_id_t &page_id, const page_size_t &page_size) noexcept : m_page_id(page_id), m_page_size(page_size), m_is_temp_space(fsp_is_system_temporary(page_id.space())), m_buf_pool(buf_pool_get(m_page_id)) {} /** For fetching a single page. @return block from pool on success or nullptr on failure. */ buf_block_t *single_page(); private: /** Lookup page in the hash table. @return block if found or nullptr if not found. */ buf_block_t *lookup(); /** Get page if it's in the buffer pool or set a watch on it. @return block that is being watched or nullptr. */ buf_block_t *is_on_watch(); /** Initiate a read request from persistent store. */ void read_page(); dberr_t zip_page_handler(buf_block_t *&fix_block); /** Check block state. @return DB_SUCCESS or error code. */ dberr_t check_state(buf_block_t *&block); /** Temporary table pages have different latching rules because they are not redo logged. @param[in,out] block Temporary tablespace to fetch. */ void temp_space_page_handler(buf_block_t *block); /** Add the page to the mini-transaction along with latching context. @param[in,out] block Block for which to add the latching context. */ void mtr_add_page(buf_block_t *block); /** Check if fetch mode is an optimistic fetch. @return true if it's an optimistic fetch. */ bool is_optimistic() const; /** Check if the fetch mode is OK with freed pages. @return true if freed pages are OK. */ [[nodiscard]] bool is_possibly_freed() const noexcept; #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG dberr_t debug_check(buf_block_t *fix_block); #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ public: /** ID of page to lookup. */ const page_id_t &m_page_id; /** Size of page on disk. */ const page_size_t &m_page_size; /** true if page belongs to a temporary tablespace. */ const bool m_is_temp_space{}; /** Latch mode required on the page. */ ulint m_rw_latch; /** Hint about page to fetch. */ buf_block_t *m_guess{}; /** Fetch mode. */ Page_fetch m_mode; /** File from where called. */ const char *m_file{}; /** Line number in file from where called. */ ulint m_line{}; /** Mini-transaction covering the fetch. */ mtr_t *m_mtr{}; /** Mark page as dirty even if page is being pinned without any latch. */ bool m_dirty_with_no_latch{}; /** Number of retries before giving up. */ size_t m_retries{}; /** Buffer pool to fetch from. */ buf_pool_t *m_buf_pool{}; /** Hash table lock. */ rw_lock_t *m_hash_lock{}; friend T; }; struct Buf_fetch_normal : public Buf_fetch<Buf_fetch_normal> { /** Constructor. @param[in] page_id Page ID of page to fetch. @param[in] page_size Size of page on disk. */ Buf_fetch_normal(const page_id_t &page_id, const page_size_t &page_size) : Buf_fetch(page_id, page_size) {} /** Fetch a block from the hash table or read from disk if necessary. @param[out] block Block to fetch. @return DB_SUCCESS or error code. */ dberr_t get(buf_block_t *&block) noexcept; }; dberr_t Buf_fetch_normal::get(buf_block_t *&block) noexcept { /* Keep this path as simple as possible. */ for (;;) { /* Lookup the page in the page hash. If it doesn't exist in the buffer pool then try and read it in from disk. */ ut_ad( !rw_lock_own(buf_page_hash_lock_get(m_buf_pool, m_page_id), RW_LOCK_S)); block = lookup(); if (block != nullptr) { if (block->page.was_stale()) { if (!buf_page_free_stale(m_buf_pool, &block->page, m_hash_lock)) { /* The page is during IO and can't be released. We wait some to not go into loop that would consume CPU. This is not something that will be hit frequently. */ std::this_thread::sleep_for(std::chrono::microseconds(100)); } /* The hash lock was released, we should try again lookup for the page until it's gone - it should disappear eventually when the IO ends. */ continue; } buf_block_fix(block); /* Now safe to release page_hash S lock. */ rw_lock_s_unlock(m_hash_lock); break; } /* Page not in buf_pool: needs to be read from file */ read_page(); } return DB_SUCCESS; } struct Buf_fetch_other : public Buf_fetch<Buf_fetch_other> { /** Constructor. @param[in] page_id Page ID of page to fetch. @param[in] page_size Size of page on disk. */ Buf_fetch_other(const page_id_t &page_id, const page_size_t &page_size) : Buf_fetch(page_id, page_size) {} /** Fetch a block from the hash table or read from disk if necessary. @param[out] block Block to fetch. @return DB_SUCCESS or error code. */ dberr_t get(buf_block_t *&block) noexcept; }; dberr_t Buf_fetch_other::get(buf_block_t *&block) noexcept { for (;;) { /* Lookup the page in the page hash. If it doesn't exist in the buffer pool then try and read it in from disk. */ ut_ad( !rw_lock_own(buf_page_hash_lock_get(m_buf_pool, m_page_id), RW_LOCK_S)); block = lookup(); if (block != nullptr) { /* Here we have MDL latches making the stale status to not change. */ if (block->page.was_stale()) { if (!buf_page_free_stale(m_buf_pool, &block->page, m_hash_lock)) { /* The page is during IO and can't be released. We wait some to not go into loop that would consume CPU. This is not something that will be hit frequently. */ std::this_thread::sleep_for(std::chrono::microseconds(100)); } /* The hash lock was released, we should try again lookup for the page until it's gone - it should disappear eventually when the IO ends. */ continue; } if (m_is_temp_space) { temp_space_page_handler(block); } else { buf_block_fix(block); } /* Now safe to release page_hash S lock. */ rw_lock_s_unlock(m_hash_lock); break; } if (m_mode == Page_fetch::IF_IN_POOL_OR_WATCH) { block = is_on_watch(); } if (block != nullptr) { break; } if (is_optimistic() || m_mode == Page_fetch::IF_IN_POOL_OR_WATCH) { /* If it was an optimistic request, return the page only if it was found in the buffer pool and we haven't been able to find it then return nullptr (not found). */ ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_X)); ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_S)); return (DB_NOT_FOUND); } /* Page not in buf_pool: needs to be read from file */ read_page(); } return (DB_SUCCESS); } template <typename T> buf_block_t *Buf_fetch<T>::lookup() { m_hash_lock = buf_page_hash_lock_get(m_buf_pool, m_page_id); auto block = m_guess; rw_lock_s_lock(m_hash_lock, UT_LOCATION_HERE); /* If not own LRU_list_mutex, page_hash can be changed. */ m_hash_lock = buf_page_hash_lock_s_confirm(m_hash_lock, m_buf_pool, m_page_id); if (block != nullptr) { /* If the m_guess is a compressed page descriptor that has been allocated by buf_page_alloc_descriptor(), it may have been freed by buf_relocate(). Also, the buffer pool could get resized and m_guess's chunk could get freed, so we need to check the `block` pointer is still within one of the chunks before dereferencing it to verify it still contains the same m_page_id */ if (!buf_is_block_in_instance(m_buf_pool, block) || m_page_id != block->page.id || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { /* Our m_guess was bogus or things have changed since. */ block = m_guess = nullptr; } else { ut_ad(!block->page.in_zip_hash); } } if (block == nullptr) { block = reinterpret_cast<buf_block_t *>( buf_page_hash_get_low(m_buf_pool, m_page_id)); } if (block == nullptr) { rw_lock_s_unlock(m_hash_lock); return (nullptr); } const auto bpage = &block->page; if (buf_pool_watch_is_sentinel(m_buf_pool, bpage)) { rw_lock_s_unlock(m_hash_lock); return (nullptr); } return (block); } template <typename T> buf_block_t *Buf_fetch<T>::is_on_watch() { ut_ad(m_mode == Page_fetch::IF_IN_POOL_OR_WATCH); rw_lock_x_lock(m_hash_lock, UT_LOCATION_HERE); /* If not own LRU_list_mutex, page_hash can be changed. */ m_hash_lock = buf_page_hash_lock_x_confirm(m_hash_lock, m_buf_pool, m_page_id); auto block = reinterpret_cast<buf_block_t *>( buf_pool_watch_set(m_page_id, &m_hash_lock)); if (block == nullptr) { rw_lock_x_unlock(m_hash_lock); return (nullptr); } /* We can release hash_lock after we increment the fix count to make sure that no state change takes place. */ if (m_is_temp_space) { temp_space_page_handler(block); } else { buf_block_fix(block); } rw_lock_x_unlock(m_hash_lock); return (block); } template <typename T> dberr_t Buf_fetch<T>::zip_page_handler(buf_block_t *&fix_block) { if (m_mode == Page_fetch::PEEK_IF_IN_POOL) { /* This m_mode is only used for dropping an adaptive hash index. There cannot be an adaptive hash index for a compressed-only page, so do not bother decompressing the page. */ buf_block_unfix(fix_block); return (DB_NOT_FOUND); } #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG ut_ad(buf_page_get_mutex(&fix_block->page) == &m_buf_pool->zip_mutex); #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ const auto bpage = &fix_block->page; /* Note: We have already buffer fixed this block. */ /* We do not hold latches required to prevent io_fix from changing, but this check is just a heuristic to avoid waiting for I/O under mutex. If we return DB_FAIL the caller will retry soon, and if we don't then we will repeat an analogous check few lines below with the protection of buf_page_mutex_enter.*/ if (bpage->buf_fix_count > 1 || bpage->was_io_fixed()) { /* This condition often occurs when the buffer is not buffer-fixed, but I/O-fixed by buf_page_init_for_read(). */ buf_block_unfix(fix_block); /* The block is buffer-fixed or I/O-fixed. Try again later. */ std::this_thread::sleep_for(WAIT_FOR_READ); return (DB_FAIL); } auto block = buf_LRU_get_free_block(m_buf_pool); mutex_enter(&m_buf_pool->LRU_list_mutex); /* If not own LRU_list_mutex, page_hash can be changed. */ m_hash_lock = buf_page_hash_lock_get(m_buf_pool, m_page_id); rw_lock_x_lock(m_hash_lock, UT_LOCATION_HERE); /* Buffer-fixing prevents the page_hash from changing. */ ut_ad(bpage == buf_page_hash_get_low(m_buf_pool, m_page_id)); buf_block_unfix(fix_block); buf_page_mutex_enter(block); mutex_enter(&m_buf_pool->zip_mutex); if (bpage->buf_fix_count > 0 || buf_page_get_io_fix(bpage) != BUF_IO_NONE) { mutex_exit(&m_buf_pool->zip_mutex); /* The block was buffer-fixed or I/O-fixed while buf_pool->mutex was not held by this thread. Free the block that was allocated and retry. This should be extremely unlikely, for example, if buf_page_get_zip() was invoked. */ mutex_exit(&m_buf_pool->LRU_list_mutex); rw_lock_x_unlock(m_hash_lock); buf_page_mutex_exit(block); buf_LRU_block_free_non_file_page(block); /* Try again */ return (DB_FAIL); } /* Move the compressed page from bpage to block, and uncompress it. */ /* Note: this is the uncompressed block and it is not accessible by other threads yet because it is not in any list or hash table */ buf_relocate(bpage, &block->page); buf_block_init_low(block); /* Set after buf_relocate(). */ block->page.buf_fix_count.store(1); UNIV_MEM_DESC(&block->page.zip.data, page_zip_get_size(&block->page.zip)); if (buf_page_get_state(&block->page) == BUF_BLOCK_ZIP_PAGE) { #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG UT_LIST_REMOVE(m_buf_pool->zip_clean, &block->page); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_ad(!block->page.in_flush_list); } else { /* Relocate buf_pool->flush_list. */ buf_flush_relocate_on_flush_list(bpage, &block->page); } /* Buffer-fix, I/O-fix, and X-latch the block for the duration of the decompression. Also add the block to the unzip_LRU list. */ block->page.state = BUF_BLOCK_FILE_PAGE; /* Insert at the front of unzip_LRU list. */ buf_unzip_LRU_add_block(block, false); mutex_exit(&m_buf_pool->LRU_list_mutex); buf_block_set_io_fix(block, BUF_IO_READ); ut::Location loc{m_file, m_line}; rw_lock_x_lock_gen(&block->lock, 0, loc); rw_lock_x_unlock(m_hash_lock); mutex_exit(&m_buf_pool->zip_mutex); const auto access_time = buf_page_is_accessed(&block->page); buf_page_mutex_exit(block); m_buf_pool->n_pend_unzip.fetch_add(1); buf_page_free_descriptor(bpage); /* Decompress the page while not holding any buf_pool or block->mutex. */ /* Page checksum verification is already done when the page is read from disk. Hence page checksum verification is not necessary when decompressing the page. */ { bool success = buf_zip_decompress(block, false); ut_a(success); } if (!recv_recovery_is_on()) { if (access_time != std::chrono::steady_clock::time_point{}) { #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(m_page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ } else { ibuf_merge_or_delete_for_page(block, m_page_id, &m_page_size, true); } } buf_page_mutex_enter(block); buf_block_set_io_fix(block, BUF_IO_NONE); buf_page_mutex_exit(block); m_buf_pool->n_pend_unzip.fetch_sub(1); rw_lock_x_unlock(&block->lock); fix_block = block; return (DB_SUCCESS); } template <typename T> dberr_t Buf_fetch<T>::check_state(buf_block_t *&block) { switch (buf_block_get_state(block)) { case BUF_BLOCK_FILE_PAGE: ut_ad(buf_page_get_mutex(&block->page) != &m_buf_pool->zip_mutex); { /* We do not hold latches required to prevent io_fix from changing, but this check is performed after temp_space_page_handler() has already incremented buf_fix_count under block mutex. This increment either happens before or after the check of buf_fix_count in buf_flush_page(). If it was before buf_flush_page() then flush will be aborted because of seeing buf_fix_count>0. If it was after, then it must also be after buf_flush_page()'s setting io_fix to BUF_IO_WRITE which it does in the same critical section, and then we will give up here. */ if (m_is_temp_space && block->page.was_io_fixed()) { /* This suggest that page is being flushed. Avoid returning reference to this page. Instead wait for flush action to complete. For normal page this sync is done using SX lock but for intrinsic there is no latching. */ buf_block_unfix(block); std::this_thread::sleep_for(WAIT_FOR_WRITE); return (DB_FAIL); } } return (DB_SUCCESS); case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: return (zip_page_handler(block)); case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } return (DB_ERROR); } template <typename T> void Buf_fetch<T>::read_page() { if (buf_read_page(m_page_id, m_page_size)) { /* Avoid doing read-ahead for parallel scans (well, at least currently this flag is used only during the parallel scans). This would cause unnecessary IO when the process is already being parallelized on higher level of abstraction. */ if (m_mode != Page_fetch::SCAN) { buf_read_ahead_random(m_page_id, m_page_size, ibuf_inside(m_mtr)); } m_retries = 0; } else if (m_retries < BUF_PAGE_READ_MAX_RETRIES) { ++m_retries; DBUG_EXECUTE_IF("innodb_page_corruption_retries", m_retries = BUF_PAGE_READ_MAX_RETRIES;); } else { ib::fatal(UT_LOCATION_HERE, ER_IB_MSG_74) << "Unable to read page " << m_page_id << " into the buffer pool after " << BUF_PAGE_READ_MAX_RETRIES << " attempts. The most probable cause of this error may" " be that the table has been corrupted. Or, the table was" " compressed with with an algorithm that is not supported by " "this" " instance. If it is not a decompress failure, you can try to " "fix" " this problem by using innodb_force_recovery. Please " "see " REFMAN " for more details. Aborting..."; } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_ad(fsp_skip_sanity_check(m_page_id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ } template <typename T> void Buf_fetch<T>::mtr_add_page(buf_block_t *block) { mtr_memo_type_t fix_type; ut::Location loc{m_file, m_line}; switch (m_rw_latch) { case RW_NO_LATCH: fix_type = MTR_MEMO_BUF_FIX; break; case RW_S_LATCH: rw_lock_s_lock_gen(&block->lock, 0, loc); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_SX_LATCH: rw_lock_sx_lock_gen(&block->lock, 0, loc); fix_type = MTR_MEMO_PAGE_SX_FIX; break; default: ut_ad(m_rw_latch == RW_X_LATCH); rw_lock_x_lock_gen(&block->lock, 0, loc); fix_type = MTR_MEMO_PAGE_X_FIX; break; } mtr_memo_push(m_mtr, block, fix_type); } template <typename T> bool Buf_fetch<T>::is_optimistic() const { return (m_mode == Page_fetch::IF_IN_POOL || m_mode == Page_fetch::PEEK_IF_IN_POOL); } template <typename T> [[nodiscard]] bool Buf_fetch<T>::is_possibly_freed() const noexcept { return (m_mode == Page_fetch::POSSIBLY_FREED || m_mode == Page_fetch::POSSIBLY_FREED_NO_READ_AHEAD); } template <typename T> void Buf_fetch<T>::temp_space_page_handler(buf_block_t *block) { /* For temporary tablespace, the mutex is being used for synchronization between user thread and flush thread, instead of block->lock. See buf_flush_page() for the flush thread counterpart. */ auto block_mutex = buf_page_get_mutex(&block->page); mutex_enter(block_mutex); buf_block_fix(block); mutex_exit(block_mutex); } #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG template <typename T> dberr_t Buf_fetch<T>::debug_check(buf_block_t *fix_block) { if ((m_mode == Page_fetch::IF_IN_POOL || m_mode == Page_fetch::IF_IN_POOL_OR_WATCH) && (ibuf_debug || buf_debug_execute_is_force_flush())) { /* Try to evict the block from the buffer pool, to use the insert buffer (change buffer) as much as possible. */ mutex_enter(&m_buf_pool->LRU_list_mutex); buf_block_unfix(fix_block); /* Now we are only holding the buf_pool->LRU_list_mutex, not block->mutex or m_hash_lock. Blocks cannot be relocated or enter or exit the buf_pool while we are holding the buf_pool->LRU_list_mutex. */ auto fix_mutex = buf_page_get_mutex(&fix_block->page); mutex_enter(fix_mutex); if (buf_LRU_free_page(&fix_block->page, true)) { /* If not own LRU_list_mutex, page_hash can be changed. */ m_hash_lock = buf_page_hash_lock_get(m_buf_pool, m_page_id); rw_lock_x_lock(m_hash_lock, UT_LOCATION_HERE); /* If not own LRU_list_mutex, page_hash can be changed. */ m_hash_lock = buf_page_hash_lock_x_confirm(m_hash_lock, m_buf_pool, m_page_id); buf_block_t *block; if (m_mode == Page_fetch::IF_IN_POOL_OR_WATCH) { /* Set the watch, as it would have been set if the page were not in the buffer pool in the first place. */ block = reinterpret_cast<buf_block_t *>( buf_pool_watch_set(m_page_id, &m_hash_lock)); } else { block = reinterpret_cast<buf_block_t *>( buf_page_hash_get_low(m_buf_pool, m_page_id)); } rw_lock_x_unlock(m_hash_lock); if (block != nullptr) { /* Either the page has been read in or a watch was set on that in the window where we released the buf_pool::mutex and before we acquire the m_hash_lock above. Try again. */ m_guess = block; return (DB_FAIL); } ib::info(ER_IB_MSG_75) << "innodb_change_buffering_debug evict " << m_page_id; return (DB_NOT_FOUND); } if (buf_flush_page_try(m_buf_pool, fix_block)) { ib::info(ER_IB_MSG_76) << "innodb_change_buffering_debug flush " << m_page_id; m_guess = fix_block; return (DB_FAIL); } mutex_exit(&m_buf_pool->LRU_list_mutex); buf_block_fix(fix_block); buf_page_mutex_exit(fix_block); /* Failed to evict the page; change it directly */ } return (DB_SUCCESS); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ template <typename T> buf_block_t *Buf_fetch<T>::single_page() { buf_block_t *block; Counter::inc(m_buf_pool->stat.m_n_page_gets, m_page_id.page_no()); for (;;) { if (static_cast<T *>(this)->get(block) == DB_NOT_FOUND) { return (nullptr); } ut_a(!block->page.was_stale()); if (is_optimistic()) { const auto bpage = &block->page; auto block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); const auto state = buf_page_get_io_fix(bpage); mutex_exit(block_mutex); if (state == BUF_IO_READ) { /* The page is being read to buffer pool, but we cannot wait around for the read to complete. */ buf_block_unfix(block); return (nullptr); } } switch (check_state(block)) { case DB_NOT_FOUND: return (nullptr); case DB_FAIL: /* Restart the outer for(;;) loop. */ continue; case DB_SUCCESS: break; default: ut_error; break; } ut_ad(block->page.buf_fix_count > 0); ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_X)); ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_S)); ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG switch (debug_check(block)) { case DB_NOT_FOUND: return (nullptr); case DB_FAIL: /* Restart the outer for(;;) loop. */ continue; case DB_SUCCESS: break; default: ut_error; break; } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /* Break out of the outer for (;;) loop. */ break; } ut_ad(block->page.buf_fix_count > 0); #ifdef UNIV_DEBUG /* We have already buffer fixed the page, and we are committed to returning this page to the caller. Register for debugging. Avoid debug latching if page/block belongs to system temporary tablespace (Not much needed for table with single threaded access.). */ if (!m_is_temp_space) { bool ret; ut::Location loc{m_file, m_line}; ret = rw_lock_s_lock_nowait(&block->debug_latch, loc); ut_a(ret); } #endif /* UNIV_DEBUG */ ut_ad(is_possibly_freed() || !block->page.file_page_was_freed); /* Check if this is the first access to the page */ const auto access_time = buf_page_is_accessed(&block->page); /* This is a heuristic and we don't care about ordering issues. */ if (access_time == std::chrono::steady_clock::time_point{}) { buf_page_mutex_enter(block); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); } /* Don't move the page to the head of the LRU list so that the page can be discarded quickly if it is not accessed again. */ if (m_mode != Page_fetch::PEEK_IF_IN_POOL && m_mode != Page_fetch::SCAN) { buf_page_make_young_if_needed(&block->page); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(m_page_id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ /* We have to wait here because the IO_READ state was set under the protection of the hash_lock and not the block->mutex and block->lock. */ buf_wait_for_read(block); /* Mark block as dirty if requested by caller. If not requested (false) then we avoid updating the dirty state of the block and retain the original one. This is reason why ? Same block can be shared/pinned by 2 different mtrs. If first mtr set the dirty state to true and second mtr mark it as false the last updated dirty state is retained. Which means we can loose flushing of a modified block. */ if (m_dirty_with_no_latch) { block->made_dirty_with_no_latch = m_dirty_with_no_latch; } mtr_add_page(block); if (m_mode != Page_fetch::PEEK_IF_IN_POOL && m_mode != Page_fetch::POSSIBLY_FREED_NO_READ_AHEAD && access_time == std::chrono::steady_clock::time_point{}) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(m_page_id, m_page_size, ibuf_inside(m_mtr)); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_ad(ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_X)); ut_ad(!rw_lock_own(m_hash_lock, RW_LOCK_S)); ut_a(!block->page.was_stale()); return (block); } buf_block_t *buf_page_get_gen(const page_id_t &page_id, const page_size_t &page_size, ulint rw_latch, buf_block_t *guess, Page_fetch mode, ut::Location location, mtr_t *mtr, bool dirty_with_no_latch) { #ifdef UNIV_DEBUG ut_ad(mtr->is_active()); ut_ad(rw_latch == RW_S_LATCH || rw_latch == RW_X_LATCH || rw_latch == RW_SX_LATCH || rw_latch == RW_NO_LATCH); ut_ad(!ibuf_inside(mtr) || ibuf_page_low(page_id, page_size, false, location, nullptr)); switch (mode) { case Page_fetch::NO_LATCH: ut_ad(rw_latch == RW_NO_LATCH); break; case Page_fetch::NORMAL: case Page_fetch::SCAN: case Page_fetch::IF_IN_POOL: case Page_fetch::PEEK_IF_IN_POOL: case Page_fetch::IF_IN_POOL_OR_WATCH: case Page_fetch::POSSIBLY_FREED: case Page_fetch::POSSIBLY_FREED_NO_READ_AHEAD: break; default: ib::fatal(UT_LOCATION_HERE, ER_IB_ERR_UNKNOWN_PAGE_FETCH_MODE) << "Unknown fetch mode: " << (int)mode; ut_error; } bool found; const page_size_t &space_page_size = fil_space_get_page_size(page_id.space(), &found); ut_ad(!found || page_size.equals_to(space_page_size)); #endif /* UNIV_DEBUG */ if (mode == Page_fetch::NORMAL && !fsp_is_system_temporary(page_id.space())) { Buf_fetch_normal fetch(page_id, page_size); fetch.m_rw_latch = rw_latch; fetch.m_guess = guess; fetch.m_mode = mode; fetch.m_file = location.filename; fetch.m_line = location.line; fetch.m_mtr = mtr; fetch.m_dirty_with_no_latch = dirty_with_no_latch; return (fetch.single_page()); } else { Buf_fetch_other fetch(page_id, page_size); fetch.m_rw_latch = rw_latch; fetch.m_guess = guess; fetch.m_mode = mode; fetch.m_file = location.filename; fetch.m_line = location.line; fetch.m_mtr = mtr; fetch.m_dirty_with_no_latch = dirty_with_no_latch; return (fetch.single_page()); } } bool buf_page_optimistic_get(ulint rw_latch, buf_block_t *block, uint64_t modify_clock, Page_fetch fetch_mode, const char *file, ulint line, mtr_t *mtr) { ut_ad(mtr->is_active()); ut_ad(rw_latch == RW_S_LATCH || rw_latch == RW_X_LATCH || rw_latch == RW_NO_LATCH); buf_page_mutex_enter(block); if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { buf_page_mutex_exit(block); return (false); } buf_block_buf_fix_inc(block, ut::Location{file, line}); const auto access_time = buf_page_is_accessed(&block->page); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); if (fetch_mode != Page_fetch::SCAN) { buf_page_make_young_if_needed(&block->page); } ut_ad(!ibuf_inside(mtr) || ibuf_page(block->page.id, block->page.size, UT_LOCATION_HERE, nullptr)); bool success; mtr_memo_type_t fix_type; auto loc = ut::Location{file, line}; switch (rw_latch) { case RW_S_LATCH: success = rw_lock_s_lock_nowait(&block->lock, loc); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_X_LATCH: success = rw_lock_x_lock_nowait(&block->lock, loc); fix_type = MTR_MEMO_PAGE_X_FIX; break; default: ut_ad(rw_latch == RW_NO_LATCH); fix_type = MTR_MEMO_BUF_FIX; success = true; } if (!success) { buf_block_buf_fix_dec(block); return (false); } if (modify_clock != block->modify_clock) { buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); if (rw_latch == RW_S_LATCH) { rw_lock_s_unlock(&block->lock); } else if (rw_latch == RW_X_LATCH) { rw_lock_x_unlock(&block->lock); } buf_block_buf_fix_dec(block); return (false); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(block->page.id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_d(buf_page_mutex_enter(block)); ut_ad(!block->page.file_page_was_freed); ut_d(buf_page_mutex_exit(block)); if (access_time == std::chrono::steady_clock::time_point{}) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(block->page.id, block->page.size, ibuf_inside(mtr)); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ { auto buf_pool = buf_pool_from_block(block); Counter::inc(buf_pool->stat.m_n_page_gets, block->page.id.page_no()); } return (true); } bool buf_page_get_known_nowait(ulint rw_latch, buf_block_t *block, Cache_hint hint, const char *file, ulint line, mtr_t *mtr) { ut_ad(mtr->is_active()); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); buf_page_mutex_enter(block); if (buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH) { /* Another thread is just freeing the block from the LRU list of the buffer pool: do not try to access this page; this attempt to access the page can only come through the hash index because when the buffer block state is ..._REMOVE_HASH, we have already removed it from the page address hash table of the buffer pool. */ buf_page_mutex_exit(block); return (false); } ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); buf_block_buf_fix_inc(block, ut::Location{file, line}); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); auto buf_pool = buf_pool_from_block(block); if (hint == Cache_hint::MAKE_YOUNG) { buf_page_make_young_if_needed(&block->page); } ut_ad(!ibuf_inside(mtr) || hint == Cache_hint::KEEP_OLD); bool success; mtr_memo_type_t fix_type; auto loc = ut::Location{file, line}; switch (rw_latch) { case RW_S_LATCH: success = rw_lock_s_lock_nowait(&block->lock, loc); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_X_LATCH: success = rw_lock_x_lock_nowait(&block->lock, loc); fix_type = MTR_MEMO_PAGE_X_FIX; break; default: ut_error; /* RW_SX_LATCH is not implemented yet */ } if (!success) { buf_block_buf_fix_dec(block); return (false); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG if (hint != Cache_hint::KEEP_OLD) { /* If hint == BUF_KEEP_OLD, we are executing an I/O completion routine. Avoid a bogus assertion failure when ibuf_merge_or_delete_for_page() is processing a page that was just freed due to DROP INDEX, or deleting a record from SYS_INDEXES. This check will be skipped in recv_recover_page() as well. */ buf_page_mutex_enter(block); ut_a(!block->page.file_page_was_freed); buf_page_mutex_exit(block); } #endif /* UNIV_DEBUG */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((hint == Cache_hint::KEEP_OLD) || ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ Counter::inc(buf_pool->stat.m_n_page_gets, block->page.id.page_no()); return (true); } const buf_block_t *buf_page_try_get(const page_id_t &page_id, ut::Location location, mtr_t *mtr) { buf_block_t *block; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock; ut_ad(mtr); ut_ad(mtr->is_active()); block = buf_block_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (!block || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { if (block) { rw_lock_s_unlock(hash_lock); } return (nullptr); } ut_ad(!buf_pool_watch_is_sentinel(buf_pool, &block->page)); buf_page_mutex_enter(block); rw_lock_s_unlock(hash_lock); ut_ad(!block->page.was_stale()); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_a(page_id == block->page.id); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_block_buf_fix_inc(block, location); buf_page_mutex_exit(block); mtr_memo_type_t fix_type = MTR_MEMO_PAGE_S_FIX; auto success = rw_lock_s_lock_nowait(&block->lock, location); if (!success) { /* Let us try to get an X-latch. If the current thread is holding an X-latch on the page, we cannot get an S-latch. */ fix_type = MTR_MEMO_PAGE_X_FIX; success = rw_lock_x_lock_nowait(&block->lock, location); } if (!success) { buf_block_buf_fix_dec(block); return (nullptr); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(block->page.id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_d(buf_page_mutex_enter(block)); ut_d(ut_a(!block->page.file_page_was_freed)); ut_d(buf_page_mutex_exit(block)); buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); Counter::inc(buf_pool->stat.m_n_page_gets, block->page.id.page_no()); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ return (block); } /** Initialize some fields of a control block. @param[in,out] bpage Block to initialize. */ static void buf_page_init_low(buf_page_t *bpage) noexcept { ut_ad(bpage->id.space() != UINT32_UNDEFINED); ut_ad(bpage->id.page_no() != UINT32_UNDEFINED); ut_ad(mutex_own(buf_page_get_mutex(bpage))); bpage->flush_type = BUF_FLUSH_LRU; bpage->reinit_io_fix(); bpage->buf_fix_count.store(0); bpage->freed_page_clock = 0; bpage->access_time = {}; bpage->set_newest_lsn(0); bpage->set_clean(); HASH_INVALIDATE(bpage, hash); ut_d(bpage->file_page_was_freed = false); } /** Inits a page to the buffer buf_pool. The block pointer must be private to the calling thread at the start of this function. @param[in,out] buf_pool buffer pool @param[in] page_id page id @param[in] page_size page size @param[in,out] block block to init */ static void buf_page_init(buf_pool_t *buf_pool, const page_id_t &page_id, const page_size_t &page_size, buf_block_t *block) { buf_page_t *hash_page; ut_ad(buf_pool == buf_pool_get(page_id)); ut_ad(mutex_own(buf_page_get_mutex(&block->page))); ut_a(buf_block_get_state(block) == BUF_BLOCK_READY_FOR_USE); ut_ad(rw_lock_own(buf_page_hash_lock_get(buf_pool, page_id), RW_LOCK_X)); /* Set the state of the block */ buf_block_set_file_page(block, page_id); #ifdef UNIV_DEBUG_VALGRIND if (fsp_is_system_or_temp_tablespace(page_id.space())) { /* Silence valid Valgrind warnings about uninitialized data being written to data files. There are some unused bytes on some pages that InnoDB does not initialize. */ UNIV_MEM_VALID(block->frame, UNIV_PAGE_SIZE); } #endif /* UNIV_DEBUG_VALGRIND */ buf_block_init_low(block); buf_page_init_low(&block->page); /* Insert into the hash table of file pages */ ut_ad(!block->page.was_stale()); hash_page = buf_page_hash_get_low(buf_pool, page_id); if (hash_page == nullptr) { /* Block not found in hash table */ } else if (buf_pool_watch_is_sentinel(buf_pool, hash_page)) { /* Preserve the reference count. */ uint32_t buf_fix_count = hash_page->buf_fix_count; ut_a(buf_fix_count > 0); block->page.buf_fix_count.fetch_add(buf_fix_count); buf_pool_watch_remove(buf_pool, hash_page); } else { ib::error(ER_IB_MSG_77) << "Page " << page_id << " already found in the hash table: " << hash_page << ", " << block; ut_d(buf_print()); ut_d(buf_LRU_print()); ut_d(buf_validate()); ut_d(buf_LRU_validate()); ut_d(ut_error); } ut_ad(!block->page.in_zip_hash); ut_ad(!block->page.in_page_hash); ut_d(block->page.in_page_hash = true); ut_a(block->page.id == page_id); block->page.size.copy_from(page_size); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, page_id.hash(), &block->page); if (page_size.is_compressed()) { page_zip_set_size(&block->page.zip, page_size.physical()); } } buf_page_t *buf_page_init_for_read(ulint mode, const page_id_t &page_id, const page_size_t &page_size, bool unzip) { buf_block_t *block; rw_lock_t *hash_lock; mtr_t mtr; void *data = nullptr; buf_pool_t *buf_pool = buf_pool_get(page_id); ut_ad(buf_pool); if (mode == BUF_READ_IBUF_PAGES_ONLY) { /* It is a read-ahead within an ibuf routine */ ut_ad(!ibuf_bitmap_page(page_id, page_size)); ibuf_mtr_start(&mtr); if (!recv_recovery_is_on() && !ibuf_page(page_id, page_size, UT_LOCATION_HERE, &mtr)) { ibuf_mtr_commit(&mtr); return (nullptr); } } else { ut_ad(mode == BUF_READ_ANY_PAGE); } if (page_size.is_compressed() && !unzip && !recv_recovery_is_on()) { block = nullptr; } else { block = buf_LRU_get_free_block(buf_pool); ut_ad(block); ut_ad(!block->page.someone_has_io_responsibility()); ut_ad(buf_pool_from_block(block) == buf_pool); } buf_page_t *bpage = nullptr; if (block == nullptr) { bpage = buf_page_alloc_descriptor(); } if ((block != nullptr && page_size.is_compressed()) || block == nullptr) { data = buf_buddy_alloc(buf_pool, page_size.physical()); } mutex_enter(&buf_pool->LRU_list_mutex); hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock, UT_LOCATION_HERE); buf_page_t *watch_page; watch_page = buf_page_hash_get_low(buf_pool, page_id); if (watch_page != nullptr && !buf_pool_watch_is_sentinel(buf_pool, watch_page)) { /* The page is already in the buffer pool. */ watch_page = nullptr; mutex_exit(&buf_pool->LRU_list_mutex); rw_lock_x_unlock(hash_lock); if (bpage != nullptr) { buf_page_free_descriptor(bpage); } if (data != nullptr) { buf_buddy_free(buf_pool, data, page_size.physical()); } if (block != nullptr) { buf_LRU_block_free_non_file_page(block); } bpage = nullptr; goto func_exit; } if (block != nullptr) { ut_ad(!bpage); bpage = &block->page; ut_ad(buf_pool_from_bpage(bpage) == buf_pool); buf_page_mutex_enter(block); buf_page_init(buf_pool, page_id, page_size, block); /* Note: We are using the hash_lock for protection. This is safe because no other thread can lookup the block from the page hashtable yet. */ block->mark_for_read_io(); buf_page_set_io_fix(bpage, BUF_IO_READ); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(bpage, true /* to old blocks */); if (page_size.is_compressed()) { block->page.zip.data = (page_zip_t *)data; /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, true); } mutex_exit(&buf_pool->LRU_list_mutex); /* We set a pass-type x-lock on the frame because then the same thread which called for the read operation (and is running now at this point of code) can wait for the read to complete by waiting for the x-lock on the frame; if the x-lock were recursive, the same thread would illegally get the x-lock before the page read is completed. The x-lock is cleared by the io-handler thread. */ rw_lock_x_lock_gen(&block->lock, BUF_IO_READ, UT_LOCATION_HERE); rw_lock_x_unlock(hash_lock); buf_page_mutex_exit(block); } else { /* Initialize the buf_pool pointer. */ bpage->buf_pool_index = buf_pool_index(buf_pool); page_zip_des_init(&bpage->zip); page_zip_set_size(&bpage->zip, page_size.physical()); ut_ad(data); bpage->zip.data = (page_zip_t *)data; bpage->size.copy_from(page_size); mutex_enter(&buf_pool->zip_mutex); UNIV_MEM_DESC(bpage->zip.data, bpage->size.physical()); /* So that we can attach the fil_space_t instance. */ bpage->reset_page_id(page_id); bpage->reset_flush_observer(); bpage->state = BUF_BLOCK_ZIP_PAGE; bpage->init_io_fix(); buf_page_init_low(bpage); ut_ad(bpage->state == BUF_BLOCK_ZIP_PAGE); ut_ad(bpage->id == page_id); ut_d(bpage->in_page_hash = false); ut_d(bpage->in_zip_hash = false); ut_d(bpage->in_flush_list = false); ut_d(bpage->in_free_list = false); ut_d(bpage->in_LRU_list = false); ut_d(bpage->in_page_hash = true); if (watch_page != nullptr) { /* Preserve the reference count. */ uint32_t buf_fix_count; buf_fix_count = watch_page->buf_fix_count; ut_a(buf_fix_count > 0); bpage->buf_fix_count.fetch_add(buf_fix_count); ut_ad(buf_pool_watch_is_sentinel(buf_pool, watch_page)); buf_pool_watch_remove(buf_pool, watch_page); } HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, bpage->id.hash(), bpage); rw_lock_x_unlock(hash_lock); /* The block must be put to the LRU list, to the old blocks. The zip size is already set into the page zip */ buf_LRU_add_block(bpage, true /* to old blocks */); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG buf_LRU_insert_zip_clean(bpage); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ mutex_exit(&buf_pool->LRU_list_mutex); buf_page_set_io_fix(bpage, BUF_IO_READ); mutex_exit(&buf_pool->zip_mutex); } buf_pool->n_pend_reads.fetch_add(1); func_exit: if (mode == BUF_READ_IBUF_PAGES_ONLY) { ibuf_mtr_commit(&mtr); } ut_ad(!rw_lock_own(hash_lock, RW_LOCK_X)); ut_ad(!rw_lock_own(hash_lock, RW_LOCK_S)); ut_ad(!bpage || buf_page_in_file(bpage)); return (bpage); } buf_block_t *buf_page_create(const page_id_t &page_id, const page_size_t &page_size, rw_lock_type_t rw_latch, mtr_t *mtr) { buf_frame_t *frame; buf_block_t *block; buf_block_t *free_block = nullptr; buf_pool_t *buf_pool = buf_pool_get(page_id); rw_lock_t *hash_lock; ut_ad(mtr->is_active()); ut_ad(page_id.space() != 0 || !page_size.is_compressed()); free_block = buf_LRU_get_free_block(buf_pool); for (;;) { mutex_enter(&buf_pool->LRU_list_mutex); hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock, UT_LOCATION_HERE); block = (buf_block_t *)buf_page_hash_get_low(buf_pool, page_id); if (block && buf_page_in_file(&block->page) && !buf_pool_watch_is_sentinel(buf_pool, &block->page)) { if (block->page.was_stale()) { /* We must release page hash latch. The LRU mutex protects the block from being relocated or freed. */ rw_lock_x_unlock(hash_lock); if (!buf_page_free_stale(buf_pool, &block->page)) { /* The page is during IO and can't be released. We wait some to not go into loop that would consume CPU. This is not something that will be hit frequently. */ mutex_exit(&buf_pool->LRU_list_mutex); std::this_thread::sleep_for(std::chrono::microseconds(100)); } /* The hash lock was released, we should try again lookup for the page until it's gone - it should disappear eventually when the IO ends. */ continue; } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ ut_d(block->page.file_page_was_freed = false); ut_ad(!block->page.was_stale()); /* Page can be found in buf_pool */ mutex_exit(&buf_pool->LRU_list_mutex); rw_lock_x_unlock(hash_lock); buf_block_free(free_block); return ( buf_page_get(page_id, page_size, rw_latch, UT_LOCATION_HERE, mtr)); } break; } /* If we get here, the page was not in buf_pool: init it there */ DBUG_PRINT("ib_buf", ("create page " UINT32PF ":" UINT32PF, page_id.space(), page_id.page_no())); block = free_block; buf_page_mutex_enter(block); buf_page_init(buf_pool, page_id, page_size, block); buf_block_buf_fix_inc(block, UT_LOCATION_HERE); buf_page_set_accessed(&block->page); mutex_exit(&block->mutex); /* Latch the page before releasing hash lock so that concurrent request for this page doesn't see half initialized page. ALTER tablespace for encryption and clone page copy can request page for any page id within tablespace size limit. */ mtr_memo_type_t mtr_latch_type; if (rw_latch == RW_X_LATCH) { rw_lock_x_lock(&block->lock, UT_LOCATION_HERE); mtr_latch_type = MTR_MEMO_PAGE_X_FIX; } else { rw_lock_sx_lock(&block->lock, UT_LOCATION_HERE); mtr_latch_type = MTR_MEMO_PAGE_SX_FIX; } mtr_memo_push(mtr, block, mtr_latch_type); rw_lock_x_unlock(hash_lock); /* The block must be put to the LRU list */ buf_LRU_add_block(&block->page, false); buf_pool->stat.n_pages_created.fetch_add(1); if (page_size.is_compressed()) { mutex_exit(&buf_pool->LRU_list_mutex); auto data = buf_buddy_alloc(buf_pool, page_size.physical()); mutex_enter(&buf_pool->LRU_list_mutex); buf_page_mutex_enter(block); block->page.zip.data = (page_zip_t *)data; buf_page_mutex_exit(block); /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, false); } mutex_exit(&buf_pool->LRU_list_mutex); /* Change buffer will not contain entries for undo tablespaces or temporary tablespaces. */ bool skip_ibuf = fsp_is_system_temporary(page_id.space()) || fsp_is_undo_tablespace(page_id.space()); if (!skip_ibuf) { /* Delete possible entries for the page from the insert buffer: such can exist if the page belonged to an index which was dropped */ ibuf_merge_or_delete_for_page(nullptr, page_id, &page_size, true); } frame = block->frame; memset(frame + FIL_PAGE_PREV, 0xff, 4); memset(frame + FIL_PAGE_NEXT, 0xff, 4); mach_write_to_2(frame + FIL_PAGE_TYPE, FIL_PAGE_TYPE_ALLOCATED); /* These 8 bytes are also repurposed for PageIO compression and must be reset when the frame is assigned to a new page id. See fil0fil.h. The LSN stored at offset FIL_PAGE_FILE_FLUSH_LSN is used on the following pages: (1) The first page of the InnoDB system tablespace (page 0:0) (2) FIL_RTREE_SPLIT_SEQ_NUM on R-tree pages . Therefore we don't transparently compress such pages. */ memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif return (block); } /** Monitor the buffer page read/write activity, and increment corresponding counter value if MONITOR_MODULE_BUF_PAGE (module_buf_page) module is enabled. */ static void buf_page_monitor( const buf_page_t *bpage, /*!< in: pointer to the block */ enum buf_io_fix io_type) /*!< in: io_fix types */ { monitor_id_t counter; ut_a(io_type == BUF_IO_READ || io_type == BUF_IO_WRITE); const byte *frame = bpage->zip.data != nullptr ? bpage->zip.data : ((buf_block_t *)bpage)->frame; const ulint page_type = fil_page_get_type(frame); bool is_leaf = false; bool is_ibuf = false; if (page_type == FIL_PAGE_INDEX || page_type == FIL_PAGE_RTREE) { is_leaf = page_is_leaf(frame); const space_index_t ibuf_index_id = static_cast<space_index_t>(DICT_IBUF_ID_MIN + IBUF_SPACE_ID); const uint32_t space_id = bpage->id.space(); const space_index_t idx_id = btr_page_get_index_id(frame); is_ibuf = space_id == IBUF_SPACE_ID && idx_id == ibuf_index_id; /* Account reading of leaf pages into the buffer pool(s). */ if (is_leaf && io_type == BUF_IO_READ) { buf_stat_per_index->inc(index_id_t(space_id, idx_id)); } } if (!MONITOR_IS_ON(MONITOR_MODULE_BUF_PAGE)) { return; } switch (page_type) { case FIL_PAGE_INDEX: /* Check if it is an index page for insert buffer */ if (is_ibuf) { if (is_leaf) { counter = MONITOR_RW_COUNTER(io_type, MONITOR_INDEX_IBUF_LEAF_PAGE); } else { counter = MONITOR_RW_COUNTER(io_type, MONITOR_INDEX_IBUF_NON_LEAF_PAGE); } break; } [[fallthrough]]; case FIL_PAGE_RTREE: if (is_leaf) { counter = MONITOR_RW_COUNTER(io_type, MONITOR_INDEX_LEAF_PAGE); } else { counter = MONITOR_RW_COUNTER(io_type, MONITOR_INDEX_NON_LEAF_PAGE); } break; case FIL_PAGE_UNDO_LOG: counter = MONITOR_RW_COUNTER(io_type, MONITOR_UNDO_LOG_PAGE); break; case FIL_PAGE_INODE: counter = MONITOR_RW_COUNTER(io_type, MONITOR_INODE_PAGE); break; case FIL_PAGE_IBUF_FREE_LIST: counter = MONITOR_RW_COUNTER(io_type, MONITOR_IBUF_FREELIST_PAGE); break; case FIL_PAGE_IBUF_BITMAP: counter = MONITOR_RW_COUNTER(io_type, MONITOR_IBUF_BITMAP_PAGE); break; case FIL_PAGE_TYPE_SYS: counter = MONITOR_RW_COUNTER(io_type, MONITOR_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_TRX_SYS: counter = MONITOR_RW_COUNTER(io_type, MONITOR_TRX_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_FSP_HDR: counter = MONITOR_RW_COUNTER(io_type, MONITOR_FSP_HDR_PAGE); break; case FIL_PAGE_TYPE_XDES: counter = MONITOR_RW_COUNTER(io_type, MONITOR_XDES_PAGE); break; case FIL_PAGE_TYPE_BLOB: counter = MONITOR_RW_COUNTER(io_type, MONITOR_BLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB: counter = MONITOR_RW_COUNTER(io_type, MONITOR_ZBLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB2: counter = MONITOR_RW_COUNTER(io_type, MONITOR_ZBLOB2_PAGE); break; case FIL_PAGE_TYPE_RSEG_ARRAY: counter = MONITOR_RW_COUNTER(io_type, MONITOR_RSEG_ARRAY_PAGE); break; default: counter = MONITOR_RW_COUNTER(io_type, MONITOR_OTHER_PAGE); } MONITOR_INC_NOCHECK(counter); } /** Unfixes the page, unlatches the page, removes it from page_hash and removes it from LRU. @param[in,out] bpage pointer to the block */ void buf_read_page_handle_error(buf_page_t *bpage) { buf_pool_t *buf_pool = buf_pool_from_bpage(bpage); const auto uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); /* First unfix and release lock on the bpage */ mutex_enter(&buf_pool->LRU_list_mutex); rw_lock_t *hash_lock = buf_page_hash_lock_get(buf_pool, bpage->id); rw_lock_x_lock(hash_lock, UT_LOCATION_HERE); mutex_enter(buf_page_get_mutex(bpage)); ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_READ); ut_ad(bpage->buf_fix_count == 0); /* Set BUF_IO_NONE before we remove the block from LRU list */ buf_page_set_io_fix(bpage, BUF_IO_NONE); if (uncompressed) { rw_lock_x_unlock_gen(&((buf_block_t *)bpage)->lock, BUF_IO_READ); } /* The hash lock and block mutex will be released during the "free" */ buf_LRU_free_one_page(bpage, true); ut_ad(!rw_lock_own(hash_lock, RW_LOCK_X) && !rw_lock_own(hash_lock, RW_LOCK_S)); mutex_exit(&buf_pool->LRU_list_mutex); ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads.fetch_sub(1); } bool buf_page_free_stale(buf_pool_t *buf_pool, buf_page_t *bpage) noexcept { /* If a page was seen as stale it will still be stale, because we have LRU mutex.*/ ut_ad(bpage->was_stale()); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); auto *block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); /* At this point the page can be queued for flushing. */ const auto io_type = buf_page_get_io_fix(bpage); bool success = false; if (io_type == BUF_IO_NONE) { if (bpage->is_dirty()) { buf_flush_remove(bpage); } success = buf_LRU_free_page(bpage, true); } if (success) { ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); } else { mutex_exit(block_mutex); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); } ut_ad(!mutex_own(block_mutex)); return success; } void buf_page_force_evict(const page_id_t &page_id, const page_size_t &page_size, const bool dirty_is_ok) noexcept { auto buf_pool = buf_pool_get(page_id); while (true) { if (!buf_page_peek(page_id)) { break; } mtr_t mtr; mtr.start(); buf_block_t *guess = nullptr; buf_block_t *block = buf_page_get_gen(page_id, page_size, RW_S_LATCH, guess, Page_fetch::POSSIBLY_FREED_NO_READ_AHEAD, UT_LOCATION_HERE, &mtr, false); buf_page_t *bpage = reinterpret_cast<buf_page_t *>(block); if (bpage->was_stale()) { mutex_enter(&buf_pool->LRU_list_mutex); mtr.commit(); ut_ad(buf_page_peek(page_id)); bool success = buf_page_free_stale(buf_pool, bpage); if (success) { break; } mutex_exit(&buf_pool->LRU_list_mutex); } else if (!bpage->is_dirty()) { /* A clean page. */ mutex_enter(&buf_pool->LRU_list_mutex); mtr.commit(); ut_ad(buf_page_peek(page_id)); mutex_enter(&block->mutex); bool success = buf_LRU_free_page(bpage, true); if (success) { break; } mutex_exit(&buf_pool->LRU_list_mutex); mutex_exit(&block->mutex); } else { ut_a(dirty_is_ok); /* The buffer page is not stale and it is dirty. */ mutex_enter(&buf_pool->LRU_list_mutex); mtr.commit(); ut_ad(buf_page_peek(page_id)); mutex_enter(&block->mutex); bool success = false; if (buf_flush_ready_for_flush(bpage, BUF_FLUSH_SINGLE_PAGE)) { const bool sync = true; success = buf_flush_page(buf_pool, bpage, BUF_FLUSH_SINGLE_PAGE, sync); } if (!success) { mutex_exit(&buf_pool->LRU_list_mutex); mutex_exit(&block->mutex); } } std::this_thread::sleep_for(std::chrono::milliseconds(1)); } } bool buf_page_free_stale(buf_pool_t *buf_pool, buf_page_t *bpage, rw_lock_t *hash_lock) noexcept { /* This method's task is to acquire the LRU mutex so that the LRU version of this method can be called.*/ /* hash_lock protects access to bpage's cell, so it could not be freed in meantime by someone else. */ ut_ad(hash_lock == buf_page_hash_lock_get(buf_pool, bpage->id)); /* the lock is taken in S-mode */ ut_ad(rw_lock_own(hash_lock, RW_LOCK_S)); ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); if (bpage->was_io_fixed()) { /* This method must release the hash lock before exiting. */ rw_lock_s_unlock(hash_lock); return false; } /* Hash lock is lower in order than the LRU list mutex, we have to release it in order to acquire the LRU mutex. To prevent other threads from freeing the stale block we increase the fix count so that the page can't be freed by other threads. The block fixing is only valid for file pages. Currently only the non-compressed tables can be truncated (instead of space being deleted and replaced with a new one with the same name, but different ID. Thus more strict `buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE` would currently hold. */ ut_ad(buf_page_in_file(bpage)); buf_block_fix(bpage); rw_lock_s_unlock(hash_lock); DBUG_EXECUTE_IF("buf_page_free_stale_delay_lru_mutex_acquisition", std::this_thread::sleep_for(std::chrono::milliseconds(10));); mutex_enter(&buf_pool->LRU_list_mutex); /* Prepare to free, we own the LRU. */ buf_block_unfix(bpage); auto success = buf_page_free_stale(buf_pool, bpage); if (!success) { mutex_exit(&buf_pool->LRU_list_mutex); } ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); return success; } void buf_page_free_stale_during_write(buf_page_t *bpage, bool owns_sx_lock) noexcept { auto buf_pool = buf_pool_from_bpage(bpage); ut_a(bpage->is_io_fix_write()); ut_ad(bpage->current_thread_has_io_responsibility()); mutex_enter(&buf_pool->LRU_list_mutex); auto block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); /* The page is IO-fixed, so if it was seen stale, it would not be freed in meantime. */ ut_a(bpage->was_stale()); ut_a(buf_page_in_file(bpage)); if (owns_sx_lock) { rw_lock_sx_unlock_gen(&((buf_block_t *)bpage)->lock, BUF_IO_WRITE); } const auto io_type = buf_page_get_io_fix(bpage); const auto flush_type = buf_page_get_flush_type(bpage); ut_a(io_type == BUF_IO_WRITE); buf_pool->change_flush_state(flush_type, [&]() { if (bpage->is_dirty()) { buf_flush_remove(bpage); } /* The current thread is responsible for the write IO, so we are allowed to reset it back to BUF_IO_NONE. */ buf_page_set_io_fix(bpage, BUF_IO_NONE); ut_a(owns_sx_lock || buf_page_get_state(bpage) != BUF_BLOCK_FILE_PAGE); /* Since we aborted a write request. We need to adjust the number of outstanding write requests. */ --buf_pool->n_flush[flush_type]; }); /* Free the page. This can fail, if some other thread start to free this stale page during page creation - the buf_page_free_stale will buf fix the page to acquire the LRU mutex, and right before that acquisition happens our thread can be during a flush that will end up on this line.*/ if (!buf_LRU_free_page(bpage, true)) { mutex_exit(block_mutex); mutex_exit(&buf_pool->LRU_list_mutex); } ut_ad(!mutex_own(block_mutex)); ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); } #ifdef UNIV_DEBUG /* Possible io_buf states and transitions between them, with latches required for transition. @see buf_page_t::Latching_rules_helpers::get_owned_latches() for the meaning of the numbers on edges. +-----------+ +------------+ |BUF_IO_NONE| --------0&&2-----> |BUF_IO_READ | | | <-------0&&2------ +------------+ | | | | +------------+ | | -----0&&1&&2-----> |BUF_IO_WRITE| | | <----0&&1&&2------ +------------+ | | | | +------------+ | | ---------0--------> | BUF_IO_PIN | +-----------+ <--------0--------- +------------+ */ using Buf_io_fix_latching_rules = ut::Stateful_latching_rules<buf_io_fix, 3>; Buf_io_fix_latching_rules buf_io_fix_latching_rules{ {BUF_IO_NONE, BUF_IO_READ, BUF_IO_WRITE, BUF_IO_PIN}, { {BUF_IO_NONE, {0, 2}, BUF_IO_READ}, {BUF_IO_READ, {0, 2}, BUF_IO_NONE}, {BUF_IO_NONE, {0, 1, 2}, BUF_IO_WRITE}, {BUF_IO_WRITE, {0, 1, 2}, BUF_IO_NONE}, {BUF_IO_NONE, {0}, BUF_IO_PIN}, {BUF_IO_PIN, {0}, BUF_IO_NONE}, }, }; /** The purpose of this class is to hide the knowledge that Buf_io_fix_latching_rules even exists from users of buf_page_t class, while also avoiding having to tediously repeat yourself in each place where buf_page_t's implementation needs to pass typical arguments to Buf_io_fix_latching_rules such as owned_latches or current state, which require access to private fields of buf_page_t. So, the members of Latching_rules_helpers are conceptually like private methods of buf_page_t, but not exposed in the buf0buf.h file, so nobody else has to know about them. */ class buf_page_t::Latching_rules_helpers { public: /** Retrieves the set of latches held by current thread which are relevant to latching rules for the io_fix field of a given page. @param[in] page the page which has the io_fix field we care about @return the latches currently held by current thread */ static Buf_io_fix_latching_rules::latches_set_t get_owned_latches( const buf_page_t &page) { const auto buf_pool = buf_pool_from_bpage(&page); Buf_io_fix_latching_rules::latches_set_t result{}; result[0] = mutex_own(buf_page_get_mutex(&page)); result[1] = mutex_own(&buf_pool->flush_state_mutex); result[2] = page.io_responsibility.current_thread_is_responsible(); return result; } /** Checks if the current thread owns latches which are sufficient for a given page to meaningfully ask a question if page's io_fix value belongs to set A as opposed to set B. In particular it assumes that current thread indeed holds the latches preventing a state transition from A to outside of A, and from B to outside of B. Otherwise it prints error message to stderr and triggers assertion failure. @param[in] page the page which has the io_fix field we care about @param[in] A first set of buf_io_fix values @param[in] B second set of buf_io_fix values */ static void assert_latches_let_distinguish( const buf_page_t &page, const Buf_io_fix_latching_rules::nodes_set_t &A, const Buf_io_fix_latching_rules::nodes_set_t &B) { buf_io_fix_latching_rules.assert_latches_let_distinguish( get_owned_latches(page), A, B); } /** This is a convenience function the special case of the @see own_latches_to_distinguish(page,A,B) where B is the complement of A. @param[in] page the page which has the io_fix field we care about @param[in] A a set of buf_io_fix values */ static void assert_latches_let_distinguish( const buf_page_t &page, const Buf_io_fix_latching_rules::nodes_set_t &A) { buf_io_fix_latching_rules.assert_latches_let_distinguish( get_owned_latches(page), A); } /** Verifies that the current thread holds one of allowed sets of latches for a given transition from current page's io_fix state to new_state. Otherwise prints an error to std::cerr and triggers assertion failure @param[in] page the page which will change io_fix state @param[in] new_state the new desired state of io_fix for this page */ static void on_transition_to( const buf_page_t &page, const Buf_io_fix_latching_rules::node_t &new_state) { buf_io_fix_latching_rules.on_transition(page.io_fix, new_state, get_owned_latches(page)); } }; #endif /* UNIV_DEBUG */ bool buf_page_t::is_io_fix_write() const { ut_d(Latching_rules_helpers::assert_latches_let_distinguish(*this, {BUF_IO_WRITE})); return get_io_fix_snapshot() == BUF_IO_WRITE; } bool buf_page_t::is_io_fix_read() const { ut_d(Latching_rules_helpers::assert_latches_let_distinguish(*this, {BUF_IO_READ})); return get_io_fix_snapshot() == BUF_IO_READ; } bool buf_page_t::is_io_fix_read_as_opposed_to_write() const { ut_d(Latching_rules_helpers::assert_latches_let_distinguish( *this, {BUF_IO_READ}, {BUF_IO_WRITE})); const auto seen = get_io_fix_snapshot(); ut_a(seen == BUF_IO_READ || seen == BUF_IO_WRITE); return seen == BUF_IO_READ; } void buf_page_t::set_io_fix(buf_io_fix io_fix) { ut_ad(is_correct_io_fix_value(io_fix)); ut_ad(mutex_own(buf_page_get_mutex(this))); ut_ad(!is_memory()); #ifdef UNIV_DEBUG const auto old_io_fix = this->io_fix.load(); if (old_io_fix == BUF_IO_NONE && (io_fix == BUF_IO_READ || io_fix == BUF_IO_WRITE)) { take_io_responsibility(); } Latching_rules_helpers::on_transition_to(*this, io_fix); #endif this->io_fix.store(io_fix, std::memory_order_relaxed); #ifdef UNIV_DEBUG if ((old_io_fix == BUF_IO_READ || old_io_fix == BUF_IO_WRITE) && io_fix == BUF_IO_NONE) { release_io_responsibility(); } #endif } /** Fetch the page from disk using synchronous read and verify if the page_id matches the page_id in the memory buffer block. @param[in] bpage the buffer block page @param[in] type i/o context object @param[in] node file where the page is available on disk. @return true if page id is wrong in the frame. @return false if page id is correct in the frame. */ static bool sync_read_page_verify_pageid(buf_page_t *bpage, IORequest *type, fil_node_t *node) { buf_block_t *block = reinterpret_cast<buf_block_t *>(bpage); const bool is_compressed = bpage->size.is_compressed(); const page_no_t page_no = bpage->id.page_no(); const space_id_t space_id = bpage->id.space(); buf_frame_t *frame = buf_block_get_frame(block); bool is_wrong_page_id = true; if (recv_recovery_is_on() || is_compressed || node == nullptr || type == nullptr) { /* We don't attempt to read the page from disk to verify page id. */ return is_wrong_page_id; } /* Let us do a sync read and check once. */ page_no_t read_page_no = mach_read_from_4(frame + FIL_PAGE_OFFSET); space_id_t read_space_id = mach_read_from_4(frame + FIL_PAGE_SPACE_ID); const ulint page_size = univ_page_size.physical(); const auto offset = (os_offset_t)page_no * page_size; LogErr(WARNING_LEVEL, ER_IB_WRONG_PAGE_ID, (size_t)space_id, (size_t)page_no, (size_t)read_space_id, (size_t)read_page_no, node->name); const size_t MAX_RETRIES = 10; for (size_t i = 0; i < MAX_RETRIES; ++i) { auto err = os_file_read(*type, node->name, node->handle, frame, offset, page_size); if (err == DB_SUCCESS) { read_page_no = mach_read_from_4(frame + FIL_PAGE_OFFSET); read_space_id = mach_read_from_4(frame + FIL_PAGE_SPACE_ID); if (space_id == read_space_id && page_no == read_page_no) { /* PASS with synchronous read. */ LogErr(WARNING_LEVEL, ER_IB_FIXED_PAGE_ID, (size_t)space_id, (size_t)page_no, (size_t)read_space_id, (size_t)read_page_no, node->name, i); is_wrong_page_id = false; break; } else { /* The synchronous read operation reports success. But did it really fetch the page from disk? Since the page_id is still wrong, retry. */ LogErr(WARNING_LEVEL, ER_IB_WRONG_PAGEID_AFTER_SYNC_READ, (size_t)space_id, (size_t)page_no, (size_t)read_space_id, (size_t)read_page_no, node->name, i); } } else { /* Synchronous read failed for the page. */ LogErr(WARNING_LEVEL, ER_IB_SYNC_READ_FAILED, (size_t)space_id, (size_t)page_no, node->name, (size_t)err, i); } /* Before retrying the synchronous read, sleep. */ std::this_thread::sleep_for(std::chrono::milliseconds{10}); } return is_wrong_page_id; } bool buf_page_io_complete(buf_page_t *bpage, bool evict, IORequest *type, fil_node_t *node) { auto buf_pool = buf_pool_from_bpage(bpage); const bool uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); ut_a(buf_page_in_file(bpage)); const page_no_t page_no = bpage->id.page_no(); const space_id_t space_id = bpage->id.space(); /* We do not need protect io_fix here by mutex to read it because this is the only function where we can change the value from BUF_IO_READ or BUF_IO_WRITE to some other value, and our code ensures that this is the only thread that handles the i/o for this block. There are other methods that reset the IO to NONE, but they must do that before the IO is requested to OS and must be done as a part of cleanup in thread that was trying to make such IO request. */ ut_ad(bpage->current_thread_has_io_responsibility()); const auto io_type = bpage->is_io_fix_read_as_opposed_to_write() ? BUF_IO_READ : BUF_IO_WRITE; const auto flush_type = buf_page_get_flush_type(bpage); if (io_type == BUF_IO_READ) { bool compressed_page; byte *frame{}; page_no_t read_page_no; space_id_t read_space_id; bool is_wrong_page_id [[maybe_unused]] = false; if (bpage->size.is_compressed()) { frame = bpage->zip.data; buf_pool->n_pend_unzip.fetch_add(1); if (uncompressed && !buf_zip_decompress((buf_block_t *)bpage, false)) { buf_pool->n_pend_unzip.fetch_sub(1); compressed_page = false; goto corrupt; } buf_pool->n_pend_unzip.fetch_sub(1); } else { frame = reinterpret_cast<buf_block_t *>(bpage)->frame; ut_a(uncompressed); } /* If this page is not uninitialized and not in the doublewrite buffer, then the page number and space id should be the same as in block. */ read_page_no = mach_read_from_4(frame + FIL_PAGE_OFFSET); read_space_id = mach_read_from_4(frame + FIL_PAGE_SPACE_ID); if (bpage->id.space() == TRX_SYS_SPACE && dblwr::v1::is_inside(page_no)) { ib::error(ER_IB_MSG_78) << "Reading page " << bpage->id << ", which is in the doublewrite buffer!"; } else if (read_space_id == 0 && read_page_no == 0) { /* This is likely an uninitialized page. */ } else if ((space_id != 0 && space_id != read_space_id) || page_no != read_page_no) { /* We did not compare space_id to read_space_id if bpage->space == 0, because the field on the page may contain garbage in MySQL < 4.1.1, which only supported bpage->space == 0. */ /* The page id in the frame and the buffer block is different. Let us read the page again from the disk using synchronous read operation. In HCS environment, an issue is seen whereby the linux AIO system call io_getevents() reports a successful page read, but the buffer block is not having the data from the disk. To overcome this unexplained behaviour, a synchronous read operation is performed to actually fetch data from the disk. */ is_wrong_page_id = sync_read_page_verify_pageid(bpage, type, node); if (is_wrong_page_id) { ib::error(ER_IB_MSG_79) << "Space id and page number stored in " "the page read in are " << page_id_t(read_space_id, read_page_no) << ", should be " << bpage->id; } } compressed_page = Compression::is_compressed_page(frame); /* If the decompress failed then the most likely case is that we are reading in a page for which this instance doesn't support the compression algorithm. */ if (compressed_page) { Compression::meta_t meta; Compression::deserialize_header(frame, &meta); ib::error(ER_IB_MSG_80) << "Page " << bpage->id << " " << "compressed with " << Compression::to_string(meta) << " " << "that is not supported by this instance"; } /* From version 3.23.38 up we store the page checksum to the 4 first bytes of the page end lsn field */ bool is_corrupted; { BlockReporter reporter = BlockReporter(true, frame, bpage->size, fsp_is_checksum_disabled(bpage->id.space())); is_corrupted = reporter.is_corrupted(); } #ifdef UNIV_LINUX /* A crash during extending file might cause the inconsistent contents. No problem for the cases. Just fills with zero for them. - The next log record to apply is initializing - No redo log record for the page yet (brand new page) */ if (recv_recovery_is_on() && (is_corrupted || is_wrong_page_id) && recv_page_is_brand_new((buf_block_t *)bpage)) { memset(frame, 0, bpage->size.logical()); is_corrupted = false; } #endif /* UNIV_LINUX */ if (compressed_page || is_corrupted) { /* Not a real corruption if it was triggered by error injection */ DBUG_EXECUTE_IF("buf_page_import_corrupt_failure", goto page_not_corrupt;); corrupt: /* Compressed pages are basically gibberish avoid printing the contents. */ if (!compressed_page) { ib::error(ER_IB_MSG_81) << "Database page corruption on disk" " or a failed file read of page " << bpage->id << ". You may have to recover from " << "a backup."; buf_page_print(frame, bpage->size, BUF_PAGE_PRINT_NO_CRASH); ib::info(ER_IB_MSG_82) << "It is also possible that your" " operating system has corrupted" " its own file cache and rebooting" " your computer removes the error." " If the corrupt page is an index page." " You can also try to fix the" " corruption by dumping, dropping," " and reimporting the corrupt table." " You can use CHECK TABLE to scan" " your table for corruption. " << FORCE_RECOVERY_MSG; } if (srv_force_recovery < SRV_FORCE_IGNORE_CORRUPT) { /* We do not have to mark any index as corrupted here, since we only know the space id but not the exact index id. There could be multiple tables/indexes in the same space, so we will mark it later in upper layer */ buf_read_page_handle_error(bpage); return (false); } } DBUG_EXECUTE_IF("buf_page_import_corrupt_failure", page_not_corrupt : bpage = bpage;); if (recv_recovery_is_on()) { /* Pages must be uncompressed for crash recovery. */ ut_a(uncompressed); recv_recover_page(true, (buf_block_t *)bpage); } else if (uncompressed && !Compression::is_compressed_page(frame) && fil_page_get_type(frame) == FIL_PAGE_INDEX && page_is_leaf(frame) && !fsp_is_system_temporary(bpage->id.space()) && !fsp_is_undo_tablespace(bpage->id.space()) && !bpage->was_stale()) { ibuf_merge_or_delete_for_page((buf_block_t *)bpage, bpage->id, &bpage->size, true); } } bool has_LRU_mutex = false; auto block_mutex = buf_page_get_mutex(bpage); if (io_type == BUF_IO_WRITE) { /* We decide whether or not to evict the page from the LRU list based on the flush_type. - BUF_FLUSH_LIST: don't evict - BUF_FLUSH_LRU: always evict - BUF_FLUSH_SINGLE_PAGE: eviction preference is passed by the caller explicitly. */ ut_ad(!(flush_type == BUF_FLUSH_LIST && evict)); if (flush_type == BUF_FLUSH_LRU) { evict = true; } if (evict #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /* The LRU mutex is required on debug in this path: buf_flush_write_complete (called later in this method) -> buf_flush_remove -> buf_LRU_insert_zip_clean(). It is safe to query the page state without mutex protection, as transition to BUF_BLOCK_ZIP_DIRTY is possible only when the page descriptor is initialized. Assuming this thread has the IO responsibility (which is assured earlier in this method), the transitions from the BUF_BLOCK_ZIP_DIRTY are only allowed from this thread and no one else can modify the state. */ || buf_page_get_state(bpage) == BUF_BLOCK_ZIP_DIRTY #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ) { has_LRU_mutex = true; mutex_enter(&buf_pool->LRU_list_mutex); } } mutex_enter(block_mutex); #ifdef UNIV_IBUF_COUNT_DEBUG if (io_type == BUF_IO_WRITE || uncompressed) { /* For BUF_IO_READ of compressed-only blocks, the buffered operations will be merged by buf_page_get_gen() after the block has been uncompressed. */ ut_a(ibuf_count_get(bpage->id) == 0); } #endif /* UNIV_IBUF_COUNT_DEBUG */ /* Because this thread which does the unlocking is not the same that did the locking, we use a pass value != 0 in unlock, which simply removes the newest lock debug record, without checking the thread id. */ buf_page_monitor(bpage, io_type); switch (io_type) { case BUF_IO_READ: ut_ad(!has_LRU_mutex); buf_page_set_io_fix(bpage, BUF_IO_NONE); /* NOTE that the call to ibuf may have moved the ownership of the x-latch to this OS thread: do not let this confuse you in debugging! */ if (uncompressed) { rw_lock_x_unlock_gen(&((buf_block_t *)bpage)->lock, BUF_IO_READ); } mutex_exit(block_mutex); ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads.fetch_sub(1); buf_pool->stat.n_pages_read.fetch_add(1); break; case BUF_IO_WRITE: /* Write means a flush operation: call the completion routine in the flush system */ buf_flush_write_complete(bpage); if (uncompressed) { rw_lock_sx_unlock_gen(&((buf_block_t *)bpage)->lock, BUF_IO_WRITE); } buf_pool->stat.n_pages_written.fetch_add(1); ut_ad(!(evict && !has_LRU_mutex)); if (evict && buf_LRU_free_page(bpage, true)) { has_LRU_mutex = false; } else { mutex_exit(block_mutex); } if (has_LRU_mutex) { mutex_exit(&buf_pool->LRU_list_mutex); } break; default: ut_error; } DBUG_PRINT("ib_buf", ("%s page " UINT32PF ":" UINT32PF, io_type == BUF_IO_READ ? "read" : "wrote", bpage->id.space(), bpage->id.page_no())); return (true); } /** Asserts that all file pages in the buffer are in a replaceable state. @param[in] buf_pool buffer pool instance */ static void buf_assert_all_are_replaceable(buf_pool_t *buf_pool) { ut_ad(buf_pool); buf_chunk_t *chunk = buf_pool->chunks; for (auto i = buf_pool->n_chunks; i--; chunk++) { mutex_enter(&buf_pool->LRU_list_mutex); buf_assert_all_are_replaceable(chunk); mutex_exit(&buf_pool->LRU_list_mutex); } } /** Refreshes the statistics used to print per-second averages. @param[in,out] buf_pool buffer pool instance */ static void buf_refresh_io_stats(buf_pool_t *buf_pool) { buf_pool->last_printout_time = std::chrono::steady_clock::now(); buf_pool_stat_t::copy(buf_pool->old_stat, buf_pool->stat); } /** Invalidates file pages in one buffer pool instance @param[in] buf_pool buffer pool instance */ static void buf_pool_invalidate_instance(buf_pool_t *buf_pool) { ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); for (size_t i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { /* As this function is called during startup and during redo application phase during recovery, a flush might be requested either by recv_writer thread (which is not started yet, or paused by writer_mutex), or by our own thread (in which case we wait for it to finish initialization). No new write batch can be in initialization stage at this point. This also explains why we don't need flush_state_mutex to assert this. */ ut_ad(!buf_pool->init_flush[i]); /* However, it is possible that a write batch that has been posted earlier is still not complete. For buffer pool invalidation to proceed we must ensure there is NO write activity happening. */ buf_flush_await_no_flushing(buf_pool, static_cast<buf_flush_t>(i)); } /* It is crucial that the BP must contain only pages in replaceable state, before we attempt to free them using buf_LRU_scan_and_free_block(), because this function skips over pages which aren't replaceable, and we promise to our caller that all pages will be removed from BP.*/ ut_d(buf_assert_all_are_replaceable(buf_pool)); while (buf_LRU_scan_and_free_block(buf_pool, true)) { } mutex_enter(&buf_pool->LRU_list_mutex); ut_ad(UT_LIST_GET_LEN(buf_pool->LRU) == 0); ut_ad(UT_LIST_GET_LEN(buf_pool->unzip_LRU) == 0); buf_pool->freed_page_clock = 0; buf_pool->LRU_old = nullptr; buf_pool->LRU_old_len = 0; mutex_exit(&buf_pool->LRU_list_mutex); buf_pool->stat.reset(); buf_refresh_io_stats(buf_pool); } /** Invalidates the file pages in the buffer pool when an archive recovery is completed. All the file pages buffered must be in a replaceable state when this function is called: not latched and not modified. */ void buf_pool_invalidate(void) { for (ulong i = 0; i < srv_buf_pool_instances; i++) { buf_pool_invalidate_instance(buf_pool_from_array(i)); } } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /** Validates data in one buffer pool instance @param[in] buf_pool buffer pool instance */ static void buf_pool_validate_instance(buf_pool_t *buf_pool) { buf_chunk_t *chunk; ulint i; ulint n_lru_flush = 0; ulint n_page_flush = 0; ulint n_list_flush = 0; ulint n_lru = 0; ulint n_flush = 0; ulint n_free = 0; ulint n_zip = 0; ut_ad(buf_pool); mutex_enter(&buf_pool->chunks_mutex); mutex_enter(&buf_pool->LRU_list_mutex); hash_lock_x_all(buf_pool->page_hash); mutex_enter(&buf_pool->zip_mutex); mutex_enter(&buf_pool->free_list_mutex); mutex_enter(&buf_pool->flush_state_mutex); chunk = buf_pool->chunks; /* Check the uncompressed blocks. */ for (i = buf_pool->n_chunks; i--; chunk++) { ulint j; buf_block_t *block = chunk->blocks; for (j = chunk->size; j--; block++) { switch (buf_block_get_state(block)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* These should only occur on zip_clean, zip_free[], or flush_list. */ ut_error; break; case BUF_BLOCK_FILE_PAGE: ut_a(buf_page_hash_get_low(buf_pool, block->page.id) == &block->page); /* We can't latch buf_page_mutex_enter(block) as we already hold lower level latches like free_list_mutex and flush_state_mutex thus there is no reliable way here to prevent some io_fix transitions here. Fortunately transitions to and from BUF_IO_WRITE require flush_state_mutex. */ if (block->page.is_io_fix_write()) { /* buf_page_set_flush_type() is only called when holding flush_state_mutex, so we can safely check flush_type value here. */ switch (buf_page_get_flush_type(&block->page)) { case BUF_FLUSH_LRU: case BUF_FLUSH_SINGLE_PAGE: case BUF_FLUSH_LIST: break; default: ut_error; } } n_lru++; break; case BUF_BLOCK_NOT_USED: n_free++; break; case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* do nothing */ break; } } } /* Check clean compressed-only blocks. */ for (auto b : buf_pool->zip_clean) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); switch (buf_page_get_io_fix(b)) { case BUF_IO_NONE: case BUF_IO_PIN: /* All clean blocks should be I/O-unfixed. */ break; case BUF_IO_READ: /* In buf_LRU_free_page(), we temporarily set b->io_fix = BUF_IO_READ for a newly allocated control block in order to prevent buf_page_get_gen() from decompressing the block. */ break; default: ut_error; break; } /* It is OK to read oldest_modification here because we have acquired buf_pool->zip_mutex above which acts as the 'block->mutex' for these bpages. */ ut_a(!b->is_dirty()); ut_a(buf_page_hash_get_low(buf_pool, b->id) == b); n_lru++; n_zip++; } /* Check dirty blocks. */ buf_flush_list_mutex_enter(buf_pool); for (auto b : buf_pool->flush_list) { ut_ad(b->in_flush_list); ut_a(b->is_dirty()); n_flush++; switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: n_lru++; n_zip++; [[fallthrough]]; case BUF_BLOCK_FILE_PAGE: if (b->is_io_fix_write()) { switch (buf_page_get_flush_type(b)) { case BUF_FLUSH_LRU: n_lru_flush++; break; case BUF_FLUSH_SINGLE_PAGE: n_page_flush++; break; case BUF_FLUSH_LIST: n_list_flush++; break; default: ut_error; } } break; case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } ut_a(buf_page_hash_get_low(buf_pool, b->id) == b); } ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == n_flush); hash_unlock_x_all(buf_pool->page_hash); buf_flush_list_mutex_exit(buf_pool); mutex_exit(&buf_pool->zip_mutex); if (buf_pool->curr_size == buf_pool->old_size && n_lru + n_free > buf_pool->curr_size + n_zip) { ib::fatal(UT_LOCATION_HERE, ER_IB_MSG_84) << "n_LRU " << n_lru << ", n_free " << n_free << ", pool " << buf_pool->curr_size << " zip " << n_zip << ". Aborting..."; } ut_a(UT_LIST_GET_LEN(buf_pool->LRU) == n_lru); mutex_exit(&buf_pool->LRU_list_mutex); mutex_exit(&buf_pool->chunks_mutex); if (buf_pool->curr_size == buf_pool->old_size && UT_LIST_GET_LEN(buf_pool->free) > n_free) { ib::fatal(UT_LOCATION_HERE, ER_IB_MSG_85) << "Free list len " << UT_LIST_GET_LEN(buf_pool->free) << ", free blocks " << n_free << ". Aborting..."; } mutex_exit(&buf_pool->free_list_mutex); ut_a(buf_pool->n_flush[BUF_FLUSH_LIST] == n_list_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LRU] == n_lru_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] == n_page_flush); mutex_exit(&buf_pool->flush_state_mutex); buf_LRU_validate_instance(buf_pool); ut_a(buf_flush_validate(buf_pool)); } /** Validates the buffer buf_pool data structure. @return true */ bool buf_validate(void) { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); buf_pool_validate_instance(buf_pool); } return true; } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #if defined UNIV_DEBUG_PRINT || defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /** Prints info of the buffer buf_pool data structure for one instance. @param[in] buf_pool buffer pool instance */ static void buf_print_instance(buf_pool_t *buf_pool) { index_id_t *index_ids; ulint *counts; ulint size; ulint i; ulint j; ulint n_found; buf_chunk_t *chunk; ut_ad(buf_pool); size = buf_pool->curr_size; index_ids = static_cast<index_id_t *>( ut::malloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, size * sizeof *index_ids)); counts = static_cast<ulint *>( ut::malloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, sizeof(ulint) * size)); mutex_enter(&buf_pool->LRU_list_mutex); mutex_enter(&buf_pool->free_list_mutex); mutex_enter(&buf_pool->flush_state_mutex); buf_flush_list_mutex_enter(buf_pool); ib::info(ER_IB_MSG_86) << *buf_pool; buf_flush_list_mutex_exit(buf_pool); mutex_exit(&buf_pool->flush_state_mutex); mutex_exit(&buf_pool->free_list_mutex); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t *block = chunk->blocks; ulint n_blocks = chunk->size; for (; n_blocks--; block++) { const buf_frame_t *frame = block->frame; if (fil_page_index_page_check(frame)) { index_id_t id(block->page.id.space(), btr_page_get_index_id(frame)); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (index_ids[j] == id) { counts[j]++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } } mutex_exit(&buf_pool->LRU_list_mutex); for (i = 0; i < n_found; i++) { ib::info info(ER_IB_MSG_1217); info << "Block count for index " << index_ids[i] << " in buffer is about " << counts[i]; } ut::free(index_ids); ut::free(counts); buf_pool_validate_instance(buf_pool); } /** Prints info of the buffer buf_pool data structure. */ void buf_print(void) { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); buf_print_instance(buf_pool); } } #endif /* UNIV_DEBUG_PRINT || UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /** Returns the number of latched pages in the buffer pool. @param[in] buf_pool buffer pool instance @return number of latched pages */ static ulint buf_get_latched_pages_number_instance(buf_pool_t *buf_pool) { ulint i; buf_chunk_t *chunk; ulint fixed_pages_number = 0; mutex_enter(&buf_pool->LRU_list_mutex); chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t *block; ulint j; block = chunk->blocks; for (j = chunk->size; j--; block++) { if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { continue; } /* We read io_fix without block mutex because we don't care about consistent results for this statistics as much as speed */ if (block->page.buf_fix_count != 0 || block->page.was_io_fixed()) { fixed_pages_number++; } } } mutex_exit(&buf_pool->LRU_list_mutex); mutex_enter(&buf_pool->zip_mutex); /* Traverse the lists of clean and dirty compressed-only blocks. */ for (auto b : buf_pool->zip_clean) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); ut_a(buf_page_get_io_fix(b) != BUF_IO_WRITE); if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } } buf_flush_list_mutex_enter(buf_pool); for (auto b : buf_pool->flush_list) { ut_ad(b->in_flush_list); switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_REMOVE_HASH: /* We hold flush list but not LRU list mutex here. Thus encountering BUF_BLOCK_REMOVE_HASH pages is possible. */ break; case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: ut_error; break; } } buf_flush_list_mutex_exit(buf_pool); mutex_exit(&buf_pool->zip_mutex); return (fixed_pages_number); } /** Returns the number of latched pages in all the buffer pools. @return number of latched pages */ ulint buf_get_latched_pages_number(void) { ulint i; ulint total_latched_pages = 0; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); total_latched_pages += buf_get_latched_pages_number_instance(buf_pool); } return (total_latched_pages); } #endif /* UNIV_DEBUG */ /** Returns the number of pending buf pool read ios. @return number of pending read I/O operations */ ulint buf_get_n_pending_read_ios(void) { ulint pend_ios = 0; os_rmb; for (ulint i = 0; i < srv_buf_pool_instances; i++) { pend_ios += buf_pool_from_array(i)->n_pend_reads; } return (pend_ios); } /** Returns the ratio in percents of modified pages in the buffer pool / database pages in the buffer pool. @return modified page percentage ratio */ double buf_get_modified_ratio_pct(void) { double ratio; ulint lru_len = 0; ulint free_len = 0; ulint flush_list_len = 0; buf_get_total_list_len(&lru_len, &free_len, &flush_list_len); ratio = static_cast<double>(100 * flush_list_len) / (1 + lru_len + free_len); /* 1 + is there to avoid division by zero */ return (ratio); } /** Aggregates a pool stats information with the total buffer pool stats */ static void buf_stats_aggregate_pool_info( buf_pool_info_t *total_info, /*!< in/out: the buffer pool info to store aggregated result */ const buf_pool_info_t *pool_info) /*!< in: individual buffer pool stats info */ { ut_a(total_info && pool_info); /* Nothing to copy if total_info is the same as pool_info */ if (total_info == pool_info) { return; } total_info->pool_size += pool_info->pool_size; total_info->lru_len += pool_info->lru_len; total_info->old_lru_len += pool_info->old_lru_len; total_info->free_list_len += pool_info->free_list_len; total_info->flush_list_len += pool_info->flush_list_len; total_info->n_pend_unzip += pool_info->n_pend_unzip; total_info->n_pend_reads += pool_info->n_pend_reads; for (size_t i = 0; i < total_info->n_pending_flush.size(); ++i) { total_info->n_pending_flush[i] += pool_info->n_pending_flush[i]; } total_info->n_pages_made_young += pool_info->n_pages_made_young; total_info->n_pages_not_made_young += pool_info->n_pages_not_made_young; total_info->n_pages_read += pool_info->n_pages_read; total_info->n_pages_created += pool_info->n_pages_created; total_info->n_pages_written += pool_info->n_pages_written; total_info->n_page_gets += pool_info->n_page_gets; total_info->n_ra_pages_read_rnd += pool_info->n_ra_pages_read_rnd; total_info->n_ra_pages_read += pool_info->n_ra_pages_read; total_info->n_ra_pages_evicted += pool_info->n_ra_pages_evicted; total_info->page_made_young_rate += pool_info->page_made_young_rate; total_info->page_not_made_young_rate += pool_info->page_not_made_young_rate; total_info->pages_read_rate += pool_info->pages_read_rate; total_info->pages_created_rate += pool_info->pages_created_rate; total_info->pages_written_rate += pool_info->pages_written_rate; total_info->n_page_get_delta += pool_info->n_page_get_delta; total_info->page_read_delta += pool_info->page_read_delta; total_info->young_making_delta += pool_info->young_making_delta; total_info->not_young_making_delta += pool_info->not_young_making_delta; total_info->pages_readahead_rnd_rate += pool_info->pages_readahead_rnd_rate; total_info->pages_readahead_rate += pool_info->pages_readahead_rate; total_info->pages_evicted_rate += pool_info->pages_evicted_rate; total_info->unzip_lru_len += pool_info->unzip_lru_len; total_info->io_sum += pool_info->io_sum; total_info->io_cur += pool_info->io_cur; total_info->unzip_sum += pool_info->unzip_sum; total_info->unzip_cur += pool_info->unzip_cur; } /** Collect buffer pool stats information for a buffer pool. Also record aggregated stats if there are more than one buffer pool in the server */ void buf_stats_get_pool_info( buf_pool_t *buf_pool, /*!< in: buffer pool */ ulint pool_id, /*!< in: buffer pool ID */ buf_pool_info_t *all_pool_info) /*!< in/out: buffer pool info to fill */ { buf_pool_info_t *pool_info; /* Find appropriate pool_info to store stats for this buffer pool */ pool_info = &all_pool_info[pool_id]; pool_info->pool_unique_id = pool_id; pool_info->pool_size = buf_pool->curr_size; pool_info->lru_len = UT_LIST_GET_LEN(buf_pool->LRU); pool_info->old_lru_len = buf_pool->LRU_old_len; pool_info->free_list_len = UT_LIST_GET_LEN(buf_pool->free); pool_info->flush_list_len = UT_LIST_GET_LEN(buf_pool->flush_list); pool_info->n_pend_unzip = UT_LIST_GET_LEN(buf_pool->unzip_LRU); pool_info->n_pend_reads = buf_pool->n_pend_reads; for (size_t i = 0; i < pool_info->n_pending_flush.size(); ++i) { pool_info->n_pending_flush[i] = buf_pool->n_flush[i] + buf_pool->init_flush[i]; } const auto time_elapsed_s = 0.001 + std::chrono::duration_cast<std::chrono::duration<double>>( std::chrono::steady_clock::now() - buf_pool->last_printout_time) .count(); pool_info->n_pages_made_young = buf_pool->stat.n_pages_made_young; pool_info->n_pages_not_made_young = buf_pool->stat.n_pages_not_made_young; pool_info->n_pages_read = buf_pool->stat.n_pages_read; pool_info->n_pages_created = buf_pool->stat.n_pages_created; pool_info->n_pages_written = buf_pool->stat.n_pages_written; pool_info->n_page_gets = Counter::total(buf_pool->stat.m_n_page_gets); pool_info->n_ra_pages_read_rnd = buf_pool->stat.n_ra_pages_read_rnd; pool_info->n_ra_pages_read = buf_pool->stat.n_ra_pages_read; pool_info->n_ra_pages_evicted = buf_pool->stat.n_ra_pages_evicted; pool_info->page_made_young_rate = (buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young) / time_elapsed_s; pool_info->page_not_made_young_rate = (buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young) / time_elapsed_s; pool_info->pages_read_rate = (buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read) / time_elapsed_s; pool_info->pages_created_rate = (buf_pool->stat.n_pages_created - buf_pool->old_stat.n_pages_created) / time_elapsed_s; pool_info->pages_written_rate = (buf_pool->stat.n_pages_written - buf_pool->old_stat.n_pages_written) / time_elapsed_s; pool_info->n_page_get_delta = Counter::total(buf_pool->stat.m_n_page_gets) - Counter::total(buf_pool->old_stat.m_n_page_gets); if (pool_info->n_page_get_delta) { pool_info->page_read_delta = buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read; pool_info->young_making_delta = buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young; pool_info->not_young_making_delta = buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young; } pool_info->pages_readahead_rnd_rate = (buf_pool->stat.n_ra_pages_read_rnd - buf_pool->old_stat.n_ra_pages_read_rnd) / time_elapsed_s; pool_info->pages_readahead_rate = (buf_pool->stat.n_ra_pages_read - buf_pool->old_stat.n_ra_pages_read) / time_elapsed_s; pool_info->pages_evicted_rate = (buf_pool->stat.n_ra_pages_evicted - buf_pool->old_stat.n_ra_pages_evicted) / time_elapsed_s; pool_info->unzip_lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU); pool_info->io_sum = buf_LRU_stat_sum.io; pool_info->io_cur = buf_LRU_stat_cur.io; pool_info->unzip_sum = buf_LRU_stat_sum.unzip; pool_info->unzip_cur = buf_LRU_stat_cur.unzip; buf_refresh_io_stats(buf_pool); } /** Prints info of the buffer i/o. */ static void buf_print_io_instance( buf_pool_info_t *pool_info, /*!< in: buffer pool info */ FILE *file) /*!< in/out: buffer where to print */ { ut_ad(pool_info); fprintf(file, "Buffer pool size " ULINTPF "\n" "Free buffers " ULINTPF "\n" "Database pages " ULINTPF "\n" "Old database pages " ULINTPF "\n" "Modified db pages " ULINTPF "\n" "Pending reads " ULINTPF "\n" "Pending writes: LRU %zu, flush list %zu, single page %zu\n", pool_info->pool_size, pool_info->free_list_len, pool_info->lru_len, pool_info->old_lru_len, pool_info->flush_list_len, pool_info->n_pend_reads, pool_info->n_pending_flush[BUF_FLUSH_LRU], pool_info->n_pending_flush[BUF_FLUSH_LIST], pool_info->n_pending_flush[BUF_FLUSH_SINGLE_PAGE]); fprintf(file, "Pages made young " ULINTPF ", not young " ULINTPF "\n" "%.2f youngs/s, %.2f non-youngs/s\n" "Pages read " ULINTPF ", created " ULINTPF ", written " ULINTPF "\n" "%.2f reads/s, %.2f creates/s, %.2f writes/s\n", pool_info->n_pages_made_young, pool_info->n_pages_not_made_young, pool_info->page_made_young_rate, pool_info->page_not_made_young_rate, pool_info->n_pages_read, pool_info->n_pages_created, pool_info->n_pages_written, pool_info->pages_read_rate, pool_info->pages_created_rate, pool_info->pages_written_rate); if (pool_info->n_page_get_delta) { fprintf(file, "Buffer pool hit rate %lu / 1000," " young-making rate %lu / 1000 not %lu / 1000\n", (ulong)(1000 - (1000 * pool_info->page_read_delta / pool_info->n_page_get_delta)), (ulong)(1000 * pool_info->young_making_delta / pool_info->n_page_get_delta), (ulong)(1000 * pool_info->not_young_making_delta / pool_info->n_page_get_delta)); } else { fputs("No buffer pool page gets since the last printout\n", file); } /* Statistics about read ahead algorithm */ fprintf(file, "Pages read ahead %.2f/s," " evicted without access %.2f/s," " Random read ahead %.2f/s\n", pool_info->pages_readahead_rate, pool_info->pages_evicted_rate, pool_info->pages_readahead_rnd_rate); /* Print some values to help us with visualizing what is happening with LRU eviction. */ fprintf(file, "LRU len: " ULINTPF ", unzip_LRU len: " ULINTPF "\n" "I/O sum[" ULINTPF "]:cur[" ULINTPF "], " "unzip sum[" ULINTPF "]:cur[" ULINTPF "]\n", pool_info->lru_len, pool_info->unzip_lru_len, pool_info->io_sum, pool_info->io_cur, pool_info->unzip_sum, pool_info->unzip_cur); } /** Prints info of the buffer i/o. */ void buf_print_io(FILE *file) /*!< in/out: buffer where to print */ { ulint i; buf_pool_info_t *pool_info; buf_pool_info_t *pool_info_total; /* If srv_buf_pool_instances is greater than 1, allocate one extra buf_pool_info_t, the last one stores aggregated/total values from all pools */ if (srv_buf_pool_instances > 1) { pool_info = (buf_pool_info_t *)ut::zalloc_withkey( UT_NEW_THIS_FILE_PSI_KEY, (srv_buf_pool_instances + 1) * sizeof *pool_info); pool_info_total = &pool_info[srv_buf_pool_instances]; } else { ut_a(srv_buf_pool_instances == 1); pool_info_total = pool_info = static_cast<buf_pool_info_t *>( ut::zalloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, sizeof *pool_info)); } os_rmb; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool; buf_pool = buf_pool_from_array(i); /* Fetch individual buffer pool info and calculate aggregated stats along the way */ buf_stats_get_pool_info(buf_pool, i, pool_info); /* If we have more than one buffer pool, store the aggregated stats */ if (srv_buf_pool_instances > 1) { buf_stats_aggregate_pool_info(pool_info_total, &pool_info[i]); } } /* Print the aggregate buffer pool info */ buf_print_io_instance(pool_info_total, file); /* If there are more than one buffer pool, print each individual pool info */ if (srv_buf_pool_instances > 1) { fputs( "----------------------\n" "INDIVIDUAL BUFFER POOL INFO\n" "----------------------\n", file); for (i = 0; i < srv_buf_pool_instances; i++) { fprintf(file, "---BUFFER POOL " ULINTPF "\n", i); buf_print_io_instance(&pool_info[i], file); } } ut::free(pool_info); } void buf_refresh_io_stats_all() { for (size_t i = 0; i < srv_buf_pool_instances; i++) { buf_refresh_io_stats(buf_pool_from_array(i)); } } void buf_assert_all_are_replaceable() { for (size_t i = 0; i < srv_buf_pool_instances; i++) { buf_assert_all_are_replaceable(buf_pool_from_array(i)); } } size_t buf_pool_pending_io_reads_count() { size_t pending_io_reads = 0; for (size_t i = 0; i < srv_buf_pool_instances; i++) { pending_io_reads += buf_pool_from_array(i)->n_pend_reads; } return pending_io_reads; } size_t buf_pool_pending_io_writes_count() { size_t pending_io_writes = 0; for (size_t i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t *buf_pool = buf_pool_from_array(i); mutex_enter(&buf_pool->flush_state_mutex); for (const auto n_flush : buf_pool->n_flush) { pending_io_writes += n_flush; } mutex_exit(&buf_pool->flush_state_mutex); } return pending_io_writes; } void buf_pool_wait_for_no_pending_io() { uint32_t sleep_time_us = 100; uint32_t sleep_time_since_info_emitted_us = 0; constexpr uint32_t MAX_SLEEP_TIME_US = 1000 * 1000; while (true) { const size_t pending_io = buf_pool_pending_io_reads_count() + buf_pool_pending_io_writes_count(); if (pending_io == 0) { break; } /* Print a message every around 60 seconds, if we are waiting for pending IO. */ if (sleep_time_since_info_emitted_us >= 60 * 1000 * 1000) { const int error_code = srv_shutdown_state.load() != SRV_SHUTDOWN_NONE ? ER_IB_MSG_BUF_PENDING_IO_ON_SHUTDOWN : ER_IB_MSG_BUF_PENDING_IO; ib::info(error_code, pending_io); sleep_time_since_info_emitted_us = 0; } sleep_time_us = std::min(sleep_time_us * 2, MAX_SLEEP_TIME_US); std::this_thread::sleep_for(std::chrono::microseconds(sleep_time_us)); sleep_time_since_info_emitted_us += sleep_time_us; } } #else /* !UNIV_HOTBACKUP */ /** Inits a page to the buffer buf_pool, for use in mysqlbackup --restore. @param[in] page_id page id @param[in] page_size page size @param[in,out] block block to init */ void meb_page_init(const page_id_t &page_id, const page_size_t &page_size, buf_block_t *block) { block->page.state = BUF_BLOCK_FILE_PAGE; block->page.id = page_id; block->page.size.copy_from(page_size); page_zip_des_init(&block->page.zip); /* We assume that block->page.data has been allocated with page_size == univ_page_size. */ if (page_size.is_compressed()) { page_zip_set_size(&block->page.zip, page_size.physical()); block->page.zip.data = block->frame + page_size.logical(); } else { page_zip_set_size(&block->page.zip, 0); } ib::trace_1() << "meb_page_init: space_id " << block->page.id.space() << " zip_size " << block->page.size.physical() << " page_size " << block->page.size.logical(); } #endif /* !UNIV_HOTBACKUP */ /** Print the given buf_pool_t object. @param[in,out] out the output stream @param[in] buf_pool the buf_pool_t object to be printed @return the output stream */ std::ostream &operator<<(std::ostream &out, const buf_pool_t &buf_pool) { #ifndef UNIV_HOTBACKUP /* These locking requirements might be relaxed if desired */ ut_ad(mutex_own(&buf_pool.LRU_list_mutex)); ut_ad(mutex_own(&buf_pool.free_list_mutex)); ut_ad(mutex_own(&buf_pool.flush_state_mutex)); ut_ad(buf_flush_list_mutex_own(&buf_pool)); out << "[buffer pool instance: " << "buf_pool size=" << buf_pool.curr_size << ", database pages=" << UT_LIST_GET_LEN(buf_pool.LRU) << ", free pages=" << UT_LIST_GET_LEN(buf_pool.free) << ", modified database pages=" << UT_LIST_GET_LEN(buf_pool.flush_list) << ", n pending decompressions=" << buf_pool.n_pend_unzip << ", n pending reads=" << buf_pool.n_pend_reads << ", n pending flush LRU=" << buf_pool.n_flush[BUF_FLUSH_LRU] << " list=" << buf_pool.n_flush[BUF_FLUSH_LIST] << " single page=" << buf_pool.n_flush[BUF_FLUSH_SINGLE_PAGE] << ", pages made young=" << buf_pool.stat.n_pages_made_young << ", not young=" << buf_pool.stat.n_pages_not_made_young << ", pages read=" << buf_pool.stat.n_pages_read << ", created=" << buf_pool.stat.n_pages_created << ", written=" << buf_pool.stat.n_pages_written << "]"; #endif /* !UNIV_HOTBACKUP */ return (out); } const char *buf_block_t::get_page_type_str() const noexcept { page_type_t type = get_page_type(); return fil_get_page_type_str(type); } #ifndef UNIV_HOTBACKUP /** Frees the buffer pool instances and the global data structures. */ void buf_pool_free_all() { for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t *ptr = &buf_pool_ptr[i]; buf_pool_free_instance(ptr); } buf_pool_free(); } bool is_buffer_pool_resize_in_progress() { auto status = buf_pool_resize_status_code.load(); return (status != BUF_POOL_RESIZE_COMPLETE && status != BUF_POOL_RESIZE_FAILED); } #endif /* !UNIV_HOTBACKUP */ [[nodiscard]] bool buf_page_t::is_memory(const page_t *const ptr) noexcept { const page_t *const frame = page_align(ptr); return mach_read_from_8(frame + FIL_PAGE_LSN) == 0; } uint16_t buf_block_t::get_page_level() const { ut_ad(frame != nullptr); ut_ad(get_page_type() == FIL_PAGE_INDEX); uint16_t level = mach_read_from_2(frame + PAGE_HEADER + PAGE_LEVEL); ut_ad(level <= BTR_MAX_NODE_LEVEL); return level; } bool buf_block_t::is_empty() const { return page_rec_is_supremum(page_rec_get_next(page_get_infimum_rec(frame))); } #ifndef UNIV_HOTBACKUP namespace { /** Print the page's access_time as duration between first access and now, or 0.0 if never accessed @param[in] access_time the time_point when page was first accessed @return time elapsed since access_time */ int64_t time_elapsed(std::chrono::steady_clock::time_point access_time) { if (access_time == std::chrono::steady_clock::time_point{}) { return 0; } return static_cast<int64_t>( std::chrono::duration_cast<std::chrono::seconds>( std::chrono::steady_clock::now() - access_time) .count()); } } // namespace std::ostream &operator<<(std::ostream &outs, const buf_page_t &page) { /* Print in json format: "key":"value" */ ut_ad(mutex_own(buf_page_get_mutex(&page))); ut_ad(buf_page_in_file(&page)); return outs << "{\"page\":{\"id\":\"" << page.id << "\",\"size\":\"" << page.size << "\",\"page_type\":\"" << reinterpret_cast<const buf_block_t &>(page).get_page_type_str() << "\",\"was_stale\":" << page.was_stale() << ",\"buf_fix_count\":" << page.buf_fix_count.load() << ",\"io_fix\":\"" << page.get_io_fix_snapshot() << "\",\"newest_lsn\":" << page.get_newest_lsn() << ",\"oldest_lsn\":" << page.get_oldest_lsn() << ",\"is_dirty\":" << page.is_dirty() << ",\"flush_type\":\"" << page.flush_type << "\",\"dblwr_batch_id\":" << page.get_dblwr_batch_id() << ",\"old\":" << page.old << ",\"first_accessed\":" << time_elapsed(page.access_time) #ifdef UNIV_DEBUG << ",\"file_page_was_freed\":" << page.file_page_was_freed << ",\"someone_has_io_responsibility\":" << page.someone_has_io_responsibility() << ",\"current_thread_has_io_responsibility\":" << page.current_thread_has_io_responsibility() << ",\"in_flush_list\":" << page.in_flush_list << ",\"in_free_list\":" << page.in_free_list << ",\"in_LRU_list\":" << page.in_LRU_list << ",\"in_page_hash\":" << page.in_page_hash << ",\"in_zip_hash\":" << page.in_zip_hash #endif /* UNIV_DEBUG */ << "}}"; } std::ostream &operator<<(std::ostream &outs, const buf_block_t &block) { /* Print in json format: "key":"value" */ /* Block state corresponding to buf_page_state_str */ outs << "{\"block\":{\"state\":\"" << buf_block_get_state(&block) << "\",\"buf_pool_index\":" << unsigned{block.page.buf_pool_index}; if (buf_page_in_file(&block.page)) { ut_ad(mutex_own(buf_page_get_mutex(&block.page))); outs << ",\"page\":" << block.page; } return outs << ",\"made_dirty_without_latch\":" << block.made_dirty_with_no_latch << ",\"modify_clock\":" << block.modify_clock #ifdef UNIV_DEBUG << ",\"in_unzip_LRU_list\":" << block.in_unzip_LRU_list << ",\"in_withdraw_list\":" << block.in_withdraw_list << ",\"rw_lock_t\":\"" << block.lock.to_string() << "\"" #endif /* UNIV_DEBUG */ << "}}"; } #endif /* !UNIV_HOTBACKUP */