in pyiceberg/table/upsert_util.py [0:0]
def get_rows_to_update(source_table: pa.Table, target_table: pa.Table, join_cols: list[str]) -> pa.Table:
"""
Return a table with rows that need to be updated in the target table based on the join columns.
When a row is matched, an additional scan is done to evaluate the non-key columns to detect if an actual change has occurred.
Only matched rows that have an actual change to a non-key column value will be returned in the final output.
"""
all_columns = set(source_table.column_names)
join_cols_set = set(join_cols)
non_key_cols = list(all_columns - join_cols_set)
match_expr = functools.reduce(operator.and_, [pc.field(col).isin(target_table.column(col).to_pylist()) for col in join_cols])
matching_source_rows = source_table.filter(match_expr)
rows_to_update = []
for index in range(matching_source_rows.num_rows):
source_row = matching_source_rows.slice(index, 1)
target_filter = functools.reduce(operator.and_, [pc.field(col) == source_row.column(col)[0].as_py() for col in join_cols])
matching_target_row = target_table.filter(target_filter)
if matching_target_row.num_rows > 0:
needs_update = False
for non_key_col in non_key_cols:
source_value = source_row.column(non_key_col)[0].as_py()
target_value = matching_target_row.column(non_key_col)[0].as_py()
if source_value != target_value:
needs_update = True
break
if needs_update:
rows_to_update.append(source_row)
if rows_to_update:
rows_to_update_table = pa.concat_tables(rows_to_update)
else:
rows_to_update_table = pa.Table.from_arrays([], names=source_table.column_names)
common_columns = set(source_table.column_names).intersection(set(target_table.column_names))
rows_to_update_table = rows_to_update_table.select(list(common_columns))
return rows_to_update_table