void svm_cross_validation()

in libvmaf/src/svm.cpp [2343:2461]


void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
{
	int i;
	int *fold_start;
	int l = prob->l;
	int *perm = Malloc(int,l);
	int nr_class;
	if (nr_fold > l)
	{
		nr_fold = l;
		fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
	}
	fold_start = Malloc(int,nr_fold+1);
	// stratified cv may not give leave-one-out rate
	// Each class to l folds -> some folds may have zero elements
	if((param->svm_type == C_SVC ||
	    param->svm_type == NU_SVC) && nr_fold < l)
	{
		int *start = NULL;
		int *label = NULL;
		int *count = NULL;
		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);

		// random shuffle and then data grouped by fold using the array perm
		int *fold_count = Malloc(int,nr_fold);
		int c;
		int *index = Malloc(int,l);
		for(i=0;i<l;i++)
			index[i]=perm[i];
		for (c=0; c<nr_class; c++)
			for(i=0;i<count[c];i++)
			{
				int j = i+rand()%(count[c]-i);
				swap(index[start[c]+j],index[start[c]+i]);
			}
		for(i=0;i<nr_fold;i++)
		{
			fold_count[i] = 0;
			for (c=0; c<nr_class;c++)
				fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
		}
		fold_start[0]=0;
		for (i=1;i<=nr_fold;i++)
			fold_start[i] = fold_start[i-1]+fold_count[i-1];
		for (c=0; c<nr_class;c++)
			for(i=0;i<nr_fold;i++)
			{
				int begin = start[c]+i*count[c]/nr_fold;
				int end = start[c]+(i+1)*count[c]/nr_fold;
				for(int j=begin;j<end;j++)
				{
					perm[fold_start[i]] = index[j];
					fold_start[i]++;
				}
			}
		fold_start[0]=0;
		for (i=1;i<=nr_fold;i++)
			fold_start[i] = fold_start[i-1]+fold_count[i-1];
		free(start);
		free(label);
		free(count);
		free(index);
		free(fold_count);
	}
	else
	{
		for(i=0;i<l;i++) perm[i]=i;
		for(i=0;i<l;i++)
		{
			int j = i+rand()%(l-i);
			swap(perm[i],perm[j]);
		}
		for(i=0;i<=nr_fold;i++)
			fold_start[i]=i*l/nr_fold;
	}

	for(i=0;i<nr_fold;i++)
	{
		int begin = fold_start[i];
		int end = fold_start[i+1];
		int j,k;
		struct svm_problem subprob;

		subprob.l = l-(end-begin);
		subprob.x = Malloc(struct svm_node*,subprob.l);
		subprob.y = Malloc(double,subprob.l);

		k=0;
		for(j=0;j<begin;j++)
		{
			subprob.x[k] = prob->x[perm[j]];
			subprob.y[k] = prob->y[perm[j]];
			++k;
		}
		for(j=end;j<l;j++)
		{
			subprob.x[k] = prob->x[perm[j]];
			subprob.y[k] = prob->y[perm[j]];
			++k;
		}
		struct svm_model *submodel = svm_train(&subprob,param);
		if(param->probability &&
		   (param->svm_type == C_SVC || param->svm_type == NU_SVC))
		{
			double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
			for(j=begin;j<end;j++)
				target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
			free(prob_estimates);
		}
		else
			for(j=begin;j<end;j++)
				target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
		svm_free_and_destroy_model(&submodel);
		free(subprob.x);
		free(subprob.y);
	}
	free(fold_start);
	free(perm);
}