matlab/strred/matlabPyrTools/MEX/edges-orig.c (318 lines of code) (raw):
/*
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; File: edges.c
;;; Author: Eero Simoncelli
;;; Description: Boundary handling routines for use with convolve.c
;;; Creation Date: Spring 1987.
;;; MODIFIED, 6/96, to operate on double float arrays.
;;; MODIFIED by dgp, 4/1/97, to support THINK C.
;;; ----------------------------------------------------------------
;;; Object-Based Vision and Image Understanding System (OBVIUS),
;;; Copyright 1988, Vision Science Group, Media Laboratory,
;;; Massachusetts Institute of Technology.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
*/
/*
This file contains functions which determine how edges are to be
handled when performing convolutions of images with linear filters.
Any edge handling function which is local and linear may be defined,
except (unfortunately) constants cannot be added. So to treat the
edges as if the image is surrounded by a gray field, you must paste it
into a gray image, convolve, and crop it out...
The main convolution function is called internal_filter and is defined
in the file convolve.c. The idea is that the convolution function
calls the edge handling function which computes a new filter based on
the old filter and the distance to the edge of the image. For
example, reflection is done by reflecting the filter through the
appropriate axis and summing. Currently defined functions are listed
below.
*/
/*
#define DEBUG
*/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "convolve.h"
#define sgn(a) ( ((a)>0)?1:(((a)<0)?-1:0) )
#define clip(a,mn,mx) ( ((a)<(mn))?(mn):(((a)>=(mx))?(mx-1):(a)) )
int reflect1(), reflect2(), repeat(), zero(), Extend(), nocompute();
int ereflect(), predict();
/* Lookup table matching a descriptive string to the edge-handling function */
#if !THINK_C
static EDGE_HANDLER edge_foos[] =
{
{ "dont-compute", nocompute }, /* zero output for filter touching edge */
{ "zero", zero }, /* zero outside of image */
{ "repeat", repeat }, /* repeat edge pixel */
{ "reflect1", reflect1 }, /* reflect about edge pixels */
{ "reflect2", reflect2 }, /* reflect image, including edge pixels */
{ "extend", Extend }, /* extend (reflect & invert) */
{ "predict", predict }, /* predict based on portion covered by filt */
{ "ereflect", ereflect }, /* orthogonal QMF reflection */
};
#else
/*
This is really stupid, but THINK C won't allow initialization of static variables in
a code resource with string addresses. So we do it this way.
The 68K code for a MATLAB 4 MEX file can only be created by THINK C.
However, for MATLAB 5, we'll be able to use Metrowerks CodeWarrior for both 68K and PPC, so this
cludge can be dropped when we drop support for MATLAB 4.
Denis Pelli, 4/1/97.
*/
static EDGE_HANDLER edge_foos[8];
void InitializeTable(EDGE_HANDLER edge_foos[])
{
static int i=0;
if(i>0) return;
edge_foos[i].name="dont-compute";
edge_foos[i++].func=nocompute;
edge_foos[i].name="zero";
edge_foos[i++].func=zero;
edge_foos[i].name="repeat";
edge_foos[i++].func=repeat;
edge_foos[i].name="reflect1";
edge_foos[i++].func=reflect1;
edge_foos[i].name="reflect2";
edge_foos[i++].func=reflect2;
edge_foos[i].name="extend";
edge_foos[i++].func=Extend;
edge_foos[i].name="predict";
edge_foos[i++].func=predict;
edge_foos[i].name="ereflect";
edge_foos[i++].func=ereflect;
}
#endif
/*
Function looks up an edge handler id string in the structure above, and
returns the associated function
*/
fptr edge_function(char *edges)
{
int i;
#if THINK_C
InitializeTable(edge_foos);
#endif
for (i = 0; i<sizeof(edge_foos)/sizeof(EDGE_HANDLER); i++)
if (strcmp(edges,edge_foos[i].name) == 0)
return(edge_foos[i].func);
printf("Error: '%s' is not the name of a valid edge-handler!\n",edges);
for (i=0; i<sizeof(edge_foos)/sizeof(EDGE_HANDLER); i++)
{
if (i==0) printf(" Options are: ");
else printf(", ");
printf("%s",edge_foos[i].name);
}
printf("\n");
return(0);
}
/*
---------------- EDGE HANDLER ARGUMENTS ------------------------
filt - array of filter taps.
x_dim, y_dim - x and y dimensions of filt.
x_pos - position of filter relative to the horizontal image edges. Negative
values indicate left edge, positive indicate right edge. Zero
indicates that the filter is not touching either edge. An absolute
value of 1 indicates that the edge tap of the filter is over the
edge pixel of the image.
y_pos - analogous to x_pos.
result - array where the resulting filter will go. The edge
of this filter will be aligned with the image for application...
f_or_e - equal to one of the two constants EXPAND or FILTER.
--------------------------------------------------------------------
*/
/* --------------------------------------------------------------------
nocompute() - Return zero for values where filter hangs over the edge.
*/
int nocompute(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int i;
register int size = x_dim*y_dim;
if ( (x_pos>1) OR (x_pos<-1) OR (y_pos>1) OR (y_pos<-1) )
for (i=0; i<size; i++) result[i] = 0.0;
else
for (i=0; i<size; i++) result[i] = filt[i];
return(0);
}
/* --------------------------------------------------------------------
zero() - Zero outside of image. Discontinuous, but adds zero energy. */
int zero(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int y_filt,x_filt, y_res,x_res;
int filt_sz = x_dim*y_dim;
int x_start = ((x_pos>0)?(x_pos-1):((x_pos<0)?(x_pos+1):0));
int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0));
int i;
for (i=0; i<filt_sz; i++) result[i] = 0.0;
for (y_filt=0, y_res=y_start;
y_filt<filt_sz;
y_filt+=x_dim, y_res+=x_dim)
if ((y_res >= 0) AND (y_res < filt_sz))
for (x_filt=y_filt, x_res=x_start;
x_filt<y_filt+x_dim;
x_filt++, x_res++)
if ((x_res >= 0) AND (x_res < x_dim))
result[y_res+x_res] = filt[x_filt];
return(0);
}
/* --------------------------------------------------------------------
repeat() - repeat edge pixel. Continuous, but content is usually
different from image.
*/
int repeat(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int y_filt,x_filt, y_res,x_res;
int filt_sz = x_dim*y_dim;
int x_start = ((x_pos>0)?(x_pos-1):((x_pos<0)?(x_pos+1):0));
int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0));
int i;
for (i=0; i<filt_sz; i++) result[i] = 0.0;
for (y_filt=0, y_res=y_start;
y_filt<filt_sz;
y_filt+=x_dim, y_res+=x_dim)
for (x_filt=y_filt, x_res=x_start;
x_filt<y_filt+x_dim;
x_filt++, x_res++)
result[((y_res>=0)?((y_res<filt_sz)?y_res:(filt_sz-x_dim)):0)
+ ((x_res>=0)?((x_res<x_dim)?x_res:(x_dim-1)):0)]
+= filt[x_filt];
return(0);
}
/* --------------------------------------------------------------------
reflect2() - "Normal" image reflection. The edge pixel is repeated,
then the next pixel, etc. Continuous, attempting to maintain
"similar" content, but discontinuous first derivative.
*/
int reflect2(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int y_filt,x_filt, y_edge,x_edge;
register int x_base = (x_pos>0)?(x_dim-1):0;
register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0;
int filt_sz = x_dim*y_dim;
int x_edge_dist = (x_pos>0)?(x_pos-x_dim-1):(x_pos+1);
int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim-1):(y_pos+1));
int i;
#ifdef DEBUG
printf("(%d,%d) ",y_pos,x_pos);
if (x_pos==0) printf("\n");
#endif
for (i=0; i<filt_sz; i++) result[i] = 0.0;
for (y_filt=0, y_edge=y_edge_dist;
y_filt<filt_sz;
y_filt+=x_dim, y_edge+=x_dim)
{
if (y_edge IS 0) y_edge+=x_dim;
for (x_filt=y_filt, x_edge=x_edge_dist;
x_filt<y_filt+x_dim;
x_filt++, x_edge++)
{
if (x_edge IS 0) x_edge++;
result[ABS(y_base-ABS(y_edge)+x_dim) + ABS(x_base-ABS(x_edge)+1)]
+= filt[x_filt];
}
}
return(0);
}
/* --------------------------------------------------------------------
reflect1() - Reflection through the edge pixels. This is the right thing
to do if you are subsampling by 2, since it maintains parity (even
pixels positions remain even, odd ones remain odd). (note: procedure differs
depending on f_or_e parameter). */
int reflect1(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
int filt_sz = x_dim*y_dim;
register int x_start = 0, y_start = 0, x_stop = x_dim, y_stop = filt_sz;
register int y_filt,x_filt, y_edge,x_edge;
register int x_base = (x_pos>0)?(x_dim-1):0;
register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0;
int x_edge_dist = (x_pos>0)?(x_pos-x_dim):((x_pos<0)?(x_pos+1):0);
int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim):((y_pos<0)?(y_pos+1):0));
int i;
int mx_pos = (x_dim/2)+1;
int my_pos = (y_dim/2)+1;
#ifdef DEBUG
printf("(%d,%d) ",y_pos,x_pos);
if (x_pos==0) printf("\n");
#endif
for (i=0; i<filt_sz; i++) result[i] = 0.0;
/* if EXPAND and filter is centered on image edge, do not reflect */
if (f_or_e IS EXPAND)
{
if (x_pos IS mx_pos) x_stop = (x_dim+1)/2;
else if (x_pos IS -mx_pos) { x_start = x_dim/2; x_edge_dist = 0; }
if (y_pos IS my_pos) y_stop = x_dim*((y_dim+1)/2);
else if (y_pos IS -my_pos) { y_start = x_dim*(y_dim/2); y_edge_dist = 0;}
}
/* reflect at boundary of image */
for (y_filt=y_start, y_edge=y_edge_dist;
y_filt<y_stop;
y_filt+=x_dim, y_edge+=x_dim)
for (x_filt=y_filt+x_start, x_edge=x_edge_dist;
x_filt<y_filt+x_stop;
x_filt++, x_edge++)
result[ABS(y_base-ABS(y_edge)) + ABS(x_base-ABS(x_edge))]
+= filt[x_filt];
/* if EXPAND and filter is not centered on image edge, mult edge by 2 */
if (f_or_e IS EXPAND)
{
if ( (ABS(x_pos) ISNT mx_pos) AND (x_pos ISNT 0) )
for (y_filt=x_base; y_filt<filt_sz; y_filt+=x_dim)
result[y_filt] += result[y_filt];
if ( (ABS(y_pos) ISNT my_pos) AND (y_pos ISNT 0) )
for (x_filt=y_base; x_filt<y_base+x_dim; x_filt++)
result[x_filt] += result[x_filt];
}
return(0);
}
/* --------------------------------------------------------------------
Extend() - Extend image by reflecting and inverting about edge pixel
value. Maintains continuity in intensity AND first derivative (but
not higher derivs).
*/
int Extend(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
int filt_sz = x_dim*y_dim;
register int x_start = 0, y_start = 0, x_stop = x_dim, y_stop = filt_sz;
register int y_filt,x_filt, y_edge,x_edge;
register int x_base = (x_pos>0)?(x_dim-1):0;
register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0;
int x_edge_dist = (x_pos>0)?(x_pos-x_dim):((x_pos<-1)?(x_pos+1):0);
int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim):((y_pos<-1)?(y_pos+1):0));
int i;
int mx_pos = (x_dim/2)+1;
int my_pos = (y_dim/2)+1;
for (i=0; i<filt_sz; i++) result[i] = 0.0;
/* if EXPAND and filter is centered on image edge, do not reflect */
if (f_or_e IS EXPAND)
{
if (x_pos IS mx_pos) x_stop = (x_dim+1)/2;
else if (x_pos IS -mx_pos) { x_start = x_dim/2; x_edge_dist = 0; }
if (y_pos IS my_pos) y_stop = x_dim*((y_dim+1)/2);
else if (y_pos IS -my_pos) { y_start = x_dim*(y_dim/2); y_edge_dist = 0;}
}
/* reflect at boundary of image */
for (y_filt=y_start, y_edge=y_edge_dist;
y_filt<y_stop;
y_filt+=x_dim, y_edge+=x_dim)
for (x_filt=y_filt+x_start, x_edge=x_edge_dist;
x_filt<y_filt+x_stop;
x_filt++, x_edge++)
if (((!y_base AND (sgn(y_edge) IS -1)) /* y overhanging */
OR
(y_base AND (sgn(y_edge) IS 1)))
ISNT /* XOR */
((!x_base AND (sgn(x_edge) IS -1)) /* x overhanging */
OR
(x_base AND (sgn(x_edge) IS 1))))
{
result[ABS(y_base-ABS(y_edge)) + ABS(x_base-ABS(x_edge))]
-= filt[x_filt];
result[clip(y_base+y_edge,0,y_dim) + clip(x_base+x_edge,0,x_dim)]
+= filt[x_filt] + filt[x_filt];
}
else result[ABS(y_base-ABS(y_edge)) + ABS(x_base-ABS(x_edge))]
+= filt[x_filt];
return(0);
}
/* --------------------------------------------------------------------
predict() - Simple prediction. Like zero, but multiplies the result
by the reciprocal of the percentage of filter being used. (i.e. if
50% of the filter is hanging over the edge of the image, multiply the
taps being used by 2). */
int predict(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int y_filt,x_filt, y_res,x_res;
register double taps_used = 0.0; /* int *** */
register double fraction = 0.0;
int filt_sz = x_dim*y_dim;
int x_start = ((x_pos>0)?(x_pos-1):((x_pos<0)?(x_pos+1):0));
int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0));
int i;
for (i=0; i<filt_sz; i++) result[i] = 0.0;
for (y_filt=0, y_res=y_start;
y_filt<filt_sz;
y_filt+=x_dim, y_res+=x_dim)
if ((y_res >= 0) AND (y_res < filt_sz))
for (x_filt=y_filt, x_res=x_start;
x_filt<y_filt+x_dim;
x_filt++, x_res++)
if ((x_res >= 0) AND (x_res < x_dim))
{
result[y_res+x_res] = filt[x_filt];
taps_used += ABS(filt[x_filt]);
}
printf("TU: %f\n",taps_used);
if (f_or_e IS FILTER)
{
/* fraction = ( (double) filt_sz ) / ( (double) taps_used ); */
for (i=0; i<filt_sz; i++) fraction += ABS(filt[i]);
fraction = ( fraction / taps_used );
for (i=0; i<filt_sz; i++) result[i] *= fraction;
}
return(0);
}
/* --------------------------------------------------------------------
Reflect, multiplying tap of filter which is at the edge of the image
by root 2. This maintains orthogonality of odd-length linear-phase
QMF filters, but it is not useful for most applications, since it
alters the DC level. */
int ereflect(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e)
register double *filt, *result;
register int x_dim;
int y_dim, x_pos, y_pos, f_or_e;
{
register int y_filt,x_filt, y_edge,x_edge;
register int x_base = (x_pos>0)?(x_dim-1):0;
register int y_base = x_dim * ( (y_pos>0)?(y_dim-1):0 );
int filt_sz = x_dim*y_dim;
int x_edge_dist = (x_pos>1)?(x_pos-x_dim):((x_pos<-1)?(x_pos+1):0);
int y_edge_dist = x_dim * ( (y_pos>1)?(y_pos-y_dim):((y_pos<-1)?(y_pos+1):0) );
int i;
double norm,onorm;
for (i=0; i<filt_sz; i++) result[i] = 0.0;
/* reflect at boundary */
for (y_filt=0, y_edge=y_edge_dist;
y_filt<filt_sz;
y_filt+=x_dim, y_edge+=x_dim)
for (x_filt=y_filt, x_edge=x_edge_dist;
x_filt<y_filt+x_dim;
x_filt++, x_edge++)
result[ABS(y_base-ABS(y_edge)) + ABS(x_base-ABS(x_edge))]
+= filt[x_filt];
/* now multiply edge by root 2 */
if (x_pos ISNT 0)
for (y_filt=x_base; y_filt<filt_sz; y_filt+=x_dim)
result[y_filt] *= ROOT2;
if (y_pos ISNT 0)
for (x_filt=y_base; x_filt<y_base+x_dim; x_filt++)
result[x_filt] *= ROOT2;
/* now normalize to norm of original filter */
for (norm=0.0,i=0; i<filt_sz; i++)
norm += (result[i]*result[i]);
norm=sqrt(norm);
for (onorm=0.0,i=0; i<filt_sz; i++)
onorm += (filt[i]*filt[i]);
onorm = sqrt(onorm);
norm = norm/onorm;
for (i=0; i<filt_sz; i++)
result[i] /= norm;
return(0);
}
/* ------- printout stuff for testing ------------------------------
printf("Xpos: %d, Ypos: %d", x_pos, y_pos);
for (y_filt=0; y_filt<y_dim; y_filt++)
{
printf("\n");
for (x_filt=0; x_filt<x_dim; x_filt++)
printf("%6.1f", result[y_filt*x_dim+x_filt]);
}
printf("\n");
*/
/* Local Variables: */
/* buffer-read-only: t */
/* End: */