resource/model_param/libsvmnusvr_v3.py (8 lines of code) (raw):

model_type = "LIBSVMNUSVR" model_param_dict = { # ==== preprocess: normalize each feature ==== # # 'norm_type': 'none', # default: do nothing 'norm_type': 'clip_0to1', # rescale to within [0, 1] # 'norm_type': 'clip_minus1to1', # rescale to within [-1, 1] # 'norm_type': 'normalize', # rescale to mean zero and std one # ==== postprocess: clip final quality score ==== # # 'score_clip': None, # default: do nothing 'score_clip': [0.0, 100.0], # clip to within [0, 100] # ==== libsvmnusvr parameters ==== # # 'gamma': 0.0, # default 'gamma': 0.05, # vmafv2 # 'C': 1.0, # default 'C': 4.0, # vmafv2 # 'nu': 0.5, # default 'nu': 0.9, # vmafv2 }